Spaces:
Running
Running
File size: 23,648 Bytes
437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
"""
Implementation of the line segment detection module.
"""
import math
import numpy as np
import torch
class LineSegmentDetectionModule(object):
"""Module extracting line segments from junctions and line heatmaps."""
def __init__(
self,
detect_thresh,
num_samples=64,
sampling_method="local_max",
inlier_thresh=0.0,
heatmap_low_thresh=0.15,
heatmap_high_thresh=0.2,
max_local_patch_radius=3,
lambda_radius=2.0,
use_candidate_suppression=False,
nms_dist_tolerance=3.0,
use_heatmap_refinement=False,
heatmap_refine_cfg=None,
use_junction_refinement=False,
junction_refine_cfg=None,
):
"""
Parameters:
detect_thresh: The probability threshold for mean activation (0. ~ 1.)
num_samples: Number of sampling locations along the line segments.
sampling_method: Sampling method on locations ("bilinear" or "local_max").
inlier_thresh: The min inlier ratio to satisfy (0. ~ 1.) => 0. means no threshold.
heatmap_low_thresh: The lowest threshold for the pixel to be considered as candidate in junction recovery.
heatmap_high_thresh: The higher threshold for NMS in junction recovery.
max_local_patch_radius: The max patch to be considered in local maximum search.
lambda_radius: The lambda factor in linear local maximum search formulation
use_candidate_suppression: Apply candidate suppression to break long segments into short sub-segments.
nms_dist_tolerance: The distance tolerance for nms. Decide whether the junctions are on the line.
use_heatmap_refinement: Use heatmap refinement method or not.
heatmap_refine_cfg: The configs for heatmap refinement methods.
use_junction_refinement: Use junction refinement method or not.
junction_refine_cfg: The configs for junction refinement methods.
"""
# Line detection parameters
self.detect_thresh = detect_thresh
# Line sampling parameters
self.num_samples = num_samples
self.sampling_method = sampling_method
self.inlier_thresh = inlier_thresh
self.local_patch_radius = max_local_patch_radius
self.lambda_radius = lambda_radius
# Detecting junctions on the boundary parameters
self.low_thresh = heatmap_low_thresh
self.high_thresh = heatmap_high_thresh
# Pre-compute the linspace sampler
self.sampler = np.linspace(0, 1, self.num_samples)
self.torch_sampler = torch.linspace(0, 1, self.num_samples)
# Long line segment suppression configuration
self.use_candidate_suppression = use_candidate_suppression
self.nms_dist_tolerance = nms_dist_tolerance
# Heatmap refinement configuration
self.use_heatmap_refinement = use_heatmap_refinement
self.heatmap_refine_cfg = heatmap_refine_cfg
if self.use_heatmap_refinement and self.heatmap_refine_cfg is None:
raise ValueError("[Error] Missing heatmap refinement config.")
# Junction refinement configuration
self.use_junction_refinement = use_junction_refinement
self.junction_refine_cfg = junction_refine_cfg
if self.use_junction_refinement and self.junction_refine_cfg is None:
raise ValueError("[Error] Missing junction refinement config.")
def convert_inputs(self, inputs, device):
"""Convert inputs to desired torch tensor."""
if isinstance(inputs, np.ndarray):
outputs = torch.tensor(inputs, dtype=torch.float32, device=device)
elif isinstance(inputs, torch.Tensor):
outputs = inputs.to(torch.float32).to(device)
else:
raise ValueError(
"[Error] Inputs must either be torch tensor or numpy ndarray."
)
return outputs
def detect(self, junctions, heatmap, device=torch.device("cpu")):
"""Main function performing line segment detection."""
# Convert inputs to torch tensor
junctions = self.convert_inputs(junctions, device=device)
heatmap = self.convert_inputs(heatmap, device=device)
# Perform the heatmap refinement
if self.use_heatmap_refinement:
if self.heatmap_refine_cfg["mode"] == "global":
heatmap = self.refine_heatmap(
heatmap,
self.heatmap_refine_cfg["ratio"],
self.heatmap_refine_cfg["valid_thresh"],
)
elif self.heatmap_refine_cfg["mode"] == "local":
heatmap = self.refine_heatmap_local(
heatmap,
self.heatmap_refine_cfg["num_blocks"],
self.heatmap_refine_cfg["overlap_ratio"],
self.heatmap_refine_cfg["ratio"],
self.heatmap_refine_cfg["valid_thresh"],
)
# Initialize empty line map
num_junctions = junctions.shape[0]
line_map_pred = torch.zeros(
[num_junctions, num_junctions], device=device, dtype=torch.int32
)
# Stop if there are not enough junctions
if num_junctions < 2:
return line_map_pred, junctions, heatmap
# Generate the candidate map
candidate_map = torch.triu(
torch.ones(
[num_junctions, num_junctions], device=device, dtype=torch.int32
),
diagonal=1,
)
# Fetch the image boundary
if len(heatmap.shape) > 2:
H, W, _ = heatmap.shape
else:
H, W = heatmap.shape
# Optionally perform candidate filtering
if self.use_candidate_suppression:
candidate_map = self.candidate_suppression(junctions, candidate_map)
# Fetch the candidates
candidate_index_map = torch.where(candidate_map)
candidate_index_map = torch.cat(
[candidate_index_map[0][..., None], candidate_index_map[1][..., None]],
dim=-1,
)
# Get the corresponding start and end junctions
candidate_junc_start = junctions[candidate_index_map[:, 0], :]
candidate_junc_end = junctions[candidate_index_map[:, 1], :]
# Get the sampling locations (N x 64)
sampler = self.torch_sampler.to(device)[None, ...]
cand_samples_h = candidate_junc_start[:, 0:1] * sampler + candidate_junc_end[
:, 0:1
] * (1 - sampler)
cand_samples_w = candidate_junc_start[:, 1:2] * sampler + candidate_junc_end[
:, 1:2
] * (1 - sampler)
# Clip to image boundary
cand_h = torch.clamp(cand_samples_h, min=0, max=H - 1)
cand_w = torch.clamp(cand_samples_w, min=0, max=W - 1)
# Local maximum search
if self.sampling_method == "local_max":
# Compute normalized segment lengths
segments_length = torch.sqrt(
torch.sum(
(
candidate_junc_start.to(torch.float32)
- candidate_junc_end.to(torch.float32)
)
** 2,
dim=-1,
)
)
normalized_seg_length = segments_length / (((H**2) + (W**2)) ** 0.5)
# Perform local max search
num_cand = cand_h.shape[0]
group_size = 10000
if num_cand > group_size:
num_iter = math.ceil(num_cand / group_size)
sampled_feat_lst = []
for iter_idx in range(num_iter):
if not iter_idx == num_iter - 1:
cand_h_ = cand_h[
iter_idx * group_size : (iter_idx + 1) * group_size, :
]
cand_w_ = cand_w[
iter_idx * group_size : (iter_idx + 1) * group_size, :
]
normalized_seg_length_ = normalized_seg_length[
iter_idx * group_size : (iter_idx + 1) * group_size
]
else:
cand_h_ = cand_h[iter_idx * group_size :, :]
cand_w_ = cand_w[iter_idx * group_size :, :]
normalized_seg_length_ = normalized_seg_length[
iter_idx * group_size :
]
sampled_feat_ = self.detect_local_max(
heatmap, cand_h_, cand_w_, H, W, normalized_seg_length_, device
)
sampled_feat_lst.append(sampled_feat_)
sampled_feat = torch.cat(sampled_feat_lst, dim=0)
else:
sampled_feat = self.detect_local_max(
heatmap, cand_h, cand_w, H, W, normalized_seg_length, device
)
# Bilinear sampling
elif self.sampling_method == "bilinear":
# Perform bilinear sampling
sampled_feat = self.detect_bilinear(heatmap, cand_h, cand_w, H, W, device)
else:
raise ValueError("[Error] Unknown sampling method.")
# [Simple threshold detection]
# detection_results is a mask over all candidates
detection_results = torch.mean(sampled_feat, dim=-1) > self.detect_thresh
# [Inlier threshold detection]
if self.inlier_thresh > 0.0:
inlier_ratio = (
torch.sum(sampled_feat > self.detect_thresh, dim=-1).to(torch.float32)
/ self.num_samples
)
detection_results_inlier = inlier_ratio >= self.inlier_thresh
detection_results = detection_results * detection_results_inlier
# Convert detection results back to line_map_pred
detected_junc_indexes = candidate_index_map[detection_results, :]
line_map_pred[detected_junc_indexes[:, 0], detected_junc_indexes[:, 1]] = 1
line_map_pred[detected_junc_indexes[:, 1], detected_junc_indexes[:, 0]] = 1
# Perform junction refinement
if self.use_junction_refinement and len(detected_junc_indexes) > 0:
junctions, line_map_pred = self.refine_junction_perturb(
junctions, line_map_pred, heatmap, H, W, device
)
return line_map_pred, junctions, heatmap
def refine_heatmap(self, heatmap, ratio=0.2, valid_thresh=1e-2):
"""Global heatmap refinement method."""
# Grab the top 10% values
heatmap_values = heatmap[heatmap > valid_thresh]
sorted_values = torch.sort(heatmap_values, descending=True)[0]
top10_len = math.ceil(sorted_values.shape[0] * ratio)
max20 = torch.mean(sorted_values[:top10_len])
heatmap = torch.clamp(heatmap / max20, min=0.0, max=1.0)
return heatmap
def refine_heatmap_local(
self, heatmap, num_blocks=5, overlap_ratio=0.5, ratio=0.2, valid_thresh=2e-3
):
"""Local heatmap refinement method."""
# Get the shape of the heatmap
H, W = heatmap.shape
increase_ratio = 1 - overlap_ratio
h_block = round(H / (1 + (num_blocks - 1) * increase_ratio))
w_block = round(W / (1 + (num_blocks - 1) * increase_ratio))
count_map = torch.zeros(heatmap.shape, dtype=torch.int, device=heatmap.device)
heatmap_output = torch.zeros(
heatmap.shape, dtype=torch.float, device=heatmap.device
)
# Iterate through each block
for h_idx in range(num_blocks):
for w_idx in range(num_blocks):
# Fetch the heatmap
h_start = round(h_idx * h_block * increase_ratio)
w_start = round(w_idx * w_block * increase_ratio)
h_end = h_start + h_block if h_idx < num_blocks - 1 else H
w_end = w_start + w_block if w_idx < num_blocks - 1 else W
subheatmap = heatmap[h_start:h_end, w_start:w_end]
if subheatmap.max() > valid_thresh:
subheatmap = self.refine_heatmap(
subheatmap, ratio, valid_thresh=valid_thresh
)
# Aggregate it to the final heatmap
heatmap_output[h_start:h_end, w_start:w_end] += subheatmap
count_map[h_start:h_end, w_start:w_end] += 1
heatmap_output = torch.clamp(heatmap_output / count_map, max=1.0, min=0.0)
return heatmap_output
def candidate_suppression(self, junctions, candidate_map):
"""Suppress overlapping long lines in the candidate segments."""
# Define the distance tolerance
dist_tolerance = self.nms_dist_tolerance
# Compute distance between junction pairs
# (num_junc x 1 x 2) - (1 x num_junc x 2) => num_junc x num_junc map
line_dist_map = (
torch.sum(
(torch.unsqueeze(junctions, dim=1) - junctions[None, ...]) ** 2, dim=-1
)
** 0.5
)
# Fetch all the "detected lines"
seg_indexes = torch.where(torch.triu(candidate_map, diagonal=1))
start_point_idxs = seg_indexes[0]
end_point_idxs = seg_indexes[1]
start_points = junctions[start_point_idxs, :]
end_points = junctions[end_point_idxs, :]
# Fetch corresponding entries
line_dists = line_dist_map[start_point_idxs, end_point_idxs]
# Check whether they are on the line
dir_vecs = (end_points - start_points) / torch.norm(
end_points - start_points, dim=-1
)[..., None]
# Get the orthogonal distance
cand_vecs = junctions[None, ...] - start_points.unsqueeze(dim=1)
cand_vecs_norm = torch.norm(cand_vecs, dim=-1)
# Check whether they are projected directly onto the segment
proj = (
torch.einsum("bij,bjk->bik", cand_vecs, dir_vecs[..., None])
/ line_dists[..., None, None]
)
# proj is num_segs x num_junction x 1
proj_mask = (proj >= 0) * (proj <= 1)
cand_angles = torch.acos(
torch.einsum("bij,bjk->bik", cand_vecs, dir_vecs[..., None])
/ cand_vecs_norm[..., None]
)
cand_dists = cand_vecs_norm[..., None] * torch.sin(cand_angles)
junc_dist_mask = cand_dists <= dist_tolerance
junc_mask = junc_dist_mask * proj_mask
# Minus starting points
num_segs = start_point_idxs.shape[0]
junc_counts = torch.sum(junc_mask, dim=[1, 2])
junc_counts -= junc_mask[..., 0][
torch.arange(0, num_segs), start_point_idxs
].to(torch.int)
junc_counts -= junc_mask[..., 0][torch.arange(0, num_segs), end_point_idxs].to(
torch.int
)
# Get the invalid candidate mask
final_mask = junc_counts > 0
candidate_map[start_point_idxs[final_mask], end_point_idxs[final_mask]] = 0
return candidate_map
def refine_junction_perturb(self, junctions, line_map_pred, heatmap, H, W, device):
"""Refine the line endpoints in a similar way as in LSD."""
# Get the config
junction_refine_cfg = self.junction_refine_cfg
# Fetch refinement parameters
num_perturbs = junction_refine_cfg["num_perturbs"]
perturb_interval = junction_refine_cfg["perturb_interval"]
side_perturbs = (num_perturbs - 1) // 2
# Fetch the 2D perturb mat
perturb_vec = torch.arange(
start=-perturb_interval * side_perturbs,
end=perturb_interval * (side_perturbs + 1),
step=perturb_interval,
device=device,
)
w1_grid, h1_grid, w2_grid, h2_grid = torch.meshgrid(
perturb_vec, perturb_vec, perturb_vec, perturb_vec
)
perturb_tensor = torch.cat(
[
w1_grid[..., None],
h1_grid[..., None],
w2_grid[..., None],
h2_grid[..., None],
],
dim=-1,
)
perturb_tensor_flat = perturb_tensor.view(-1, 2, 2)
# Fetch the junctions and line_map
junctions = junctions.clone()
line_map = line_map_pred
# Fetch all the detected lines
detected_seg_indexes = torch.where(torch.triu(line_map, diagonal=1))
start_point_idxs = detected_seg_indexes[0]
end_point_idxs = detected_seg_indexes[1]
start_points = junctions[start_point_idxs, :]
end_points = junctions[end_point_idxs, :]
line_segments = torch.cat(
[start_points.unsqueeze(dim=1), end_points.unsqueeze(dim=1)], dim=1
)
line_segment_candidates = (
line_segments.unsqueeze(dim=1) + perturb_tensor_flat[None, ...]
)
# Clip the boundaries
line_segment_candidates[..., 0] = torch.clamp(
line_segment_candidates[..., 0], min=0, max=H - 1
)
line_segment_candidates[..., 1] = torch.clamp(
line_segment_candidates[..., 1], min=0, max=W - 1
)
# Iterate through all the segments
refined_segment_lst = []
num_segments = line_segments.shape[0]
for idx in range(num_segments):
segment = line_segment_candidates[idx, ...]
# Get the corresponding start and end junctions
candidate_junc_start = segment[:, 0, :]
candidate_junc_end = segment[:, 1, :]
# Get the sampling locations (N x 64)
sampler = self.torch_sampler.to(device)[None, ...]
cand_samples_h = candidate_junc_start[
:, 0:1
] * sampler + candidate_junc_end[:, 0:1] * (1 - sampler)
cand_samples_w = candidate_junc_start[
:, 1:2
] * sampler + candidate_junc_end[:, 1:2] * (1 - sampler)
# Clip to image boundary
cand_h = torch.clamp(cand_samples_h, min=0, max=H - 1)
cand_w = torch.clamp(cand_samples_w, min=0, max=W - 1)
# Perform bilinear sampling
segment_feat = self.detect_bilinear(heatmap, cand_h, cand_w, H, W, device)
segment_results = torch.mean(segment_feat, dim=-1)
max_idx = torch.argmax(segment_results)
refined_segment_lst.append(segment[max_idx, ...][None, ...])
# Concatenate back to segments
refined_segments = torch.cat(refined_segment_lst, dim=0)
# Convert back to junctions and line_map
junctions_new = torch.cat(
[refined_segments[:, 0, :], refined_segments[:, 1, :]], dim=0
)
junctions_new = torch.unique(junctions_new, dim=0)
line_map_new = self.segments_to_line_map(junctions_new, refined_segments)
return junctions_new, line_map_new
def segments_to_line_map(self, junctions, segments):
"""Convert the list of segments to line map."""
# Create empty line map
device = junctions.device
num_junctions = junctions.shape[0]
line_map = torch.zeros([num_junctions, num_junctions], device=device)
# Iterate through every segment
for idx in range(segments.shape[0]):
# Get the junctions from a single segement
seg = segments[idx, ...]
junction1 = seg[0, :]
junction2 = seg[1, :]
# Get index
idx_junction1 = torch.where((junctions == junction1).sum(axis=1) == 2)[0]
idx_junction2 = torch.where((junctions == junction2).sum(axis=1) == 2)[0]
# label the corresponding entries
line_map[idx_junction1, idx_junction2] = 1
line_map[idx_junction2, idx_junction1] = 1
return line_map
def detect_bilinear(self, heatmap, cand_h, cand_w, H, W, device):
"""Detection by bilinear sampling."""
# Get the floor and ceiling locations
cand_h_floor = torch.floor(cand_h).to(torch.long)
cand_h_ceil = torch.ceil(cand_h).to(torch.long)
cand_w_floor = torch.floor(cand_w).to(torch.long)
cand_w_ceil = torch.ceil(cand_w).to(torch.long)
# Perform the bilinear sampling
cand_samples_feat = (
heatmap[cand_h_floor, cand_w_floor]
* (cand_h_ceil - cand_h)
* (cand_w_ceil - cand_w)
+ heatmap[cand_h_floor, cand_w_ceil]
* (cand_h_ceil - cand_h)
* (cand_w - cand_w_floor)
+ heatmap[cand_h_ceil, cand_w_floor]
* (cand_h - cand_h_floor)
* (cand_w_ceil - cand_w)
+ heatmap[cand_h_ceil, cand_w_ceil]
* (cand_h - cand_h_floor)
* (cand_w - cand_w_floor)
)
return cand_samples_feat
def detect_local_max(
self, heatmap, cand_h, cand_w, H, W, normalized_seg_length, device
):
"""Detection by local maximum search."""
# Compute the distance threshold
dist_thresh = 0.5 * (2**0.5) + self.lambda_radius * normalized_seg_length
# Make it N x 64
dist_thresh = torch.repeat_interleave(
dist_thresh[..., None], self.num_samples, dim=-1
)
# Compute the candidate points
cand_points = torch.cat([cand_h[..., None], cand_w[..., None]], dim=-1)
cand_points_round = torch.round(cand_points) # N x 64 x 2
# Construct local patches 9x9 = 81
patch_mask = torch.zeros(
[
int(2 * self.local_patch_radius + 1),
int(2 * self.local_patch_radius + 1),
],
device=device,
)
patch_center = torch.tensor(
[[self.local_patch_radius, self.local_patch_radius]],
device=device,
dtype=torch.float32,
)
H_patch_points, W_patch_points = torch.where(patch_mask >= 0)
patch_points = torch.cat(
[H_patch_points[..., None], W_patch_points[..., None]], dim=-1
)
# Fetch the circle region
patch_center_dist = torch.sqrt(
torch.sum((patch_points - patch_center) ** 2, dim=-1)
)
patch_points = patch_points[patch_center_dist <= self.local_patch_radius, :]
# Shift [0, 0] to the center
patch_points = patch_points - self.local_patch_radius
# Construct local patch mask
patch_points_shifted = (
torch.unsqueeze(cand_points_round, dim=2) + patch_points[None, None, ...]
)
patch_dist = torch.sqrt(
torch.sum(
(torch.unsqueeze(cand_points, dim=2) - patch_points_shifted) ** 2,
dim=-1,
)
)
patch_dist_mask = patch_dist < dist_thresh[..., None]
# Get all points => num_points_center x num_patch_points x 2
points_H = torch.clamp(patch_points_shifted[:, :, :, 0], min=0, max=H - 1).to(
torch.long
)
points_W = torch.clamp(patch_points_shifted[:, :, :, 1], min=0, max=W - 1).to(
torch.long
)
points = torch.cat([points_H[..., None], points_W[..., None]], dim=-1)
# Sample the feature (N x 64 x 81)
sampled_feat = heatmap[points[:, :, :, 0], points[:, :, :, 1]]
# Filtering using the valid mask
sampled_feat = sampled_feat * patch_dist_mask.to(torch.float32)
if len(sampled_feat) == 0:
sampled_feat_lmax = torch.empty(0, 64)
else:
sampled_feat_lmax, _ = torch.max(sampled_feat, dim=-1)
return sampled_feat_lmax
|