File size: 9,790 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).


# --------------------------------------------------------
# Main encoder/decoder blocks
# --------------------------------------------------------
# References: 
# timm
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/patch_embed.py


import torch
import torch.nn as nn 

from itertools import repeat
import collections.abc


def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return x
        return tuple(repeat(x, n))
    return parse
to_2tuple = _ntuple(2)

def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor

class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)

    def extra_repr(self):
        return f'drop_prob={round(self.drop_prob,3):0.3f}'

class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks"""
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)

        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x

class Attention(nn.Module):

    def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.rope = rope 

    def forward(self, x, xpos):
        B, N, C = x.shape

        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).transpose(1,3)
        q, k, v = [qkv[:,:,i] for i in range(3)]
        # q,k,v = qkv.unbind(2)  # make torchscript happy (cannot use tensor as tuple)
               
        if self.rope is not None:
            q = self.rope(q, xpos)
            k = self.rope(k, xpos)
               
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rope=None):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, xpos):
        x = x + self.drop_path(self.attn(self.norm1(x), xpos))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

class CrossAttention(nn.Module):
    
    def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.projq = nn.Linear(dim, dim, bias=qkv_bias)
        self.projk = nn.Linear(dim, dim, bias=qkv_bias)
        self.projv = nn.Linear(dim, dim, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        
        self.rope = rope
        
    def forward(self, query, key, value, qpos, kpos):
        B, Nq, C = query.shape
        Nk = key.shape[1]
        Nv = value.shape[1]
        
        q = self.projq(query).reshape(B,Nq,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3)
        k = self.projk(key).reshape(B,Nk,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3)
        v = self.projv(value).reshape(B,Nv,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3)
        
        if self.rope is not None:
            q = self.rope(q, qpos)
            k = self.rope(k, kpos)
            
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, Nq, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class DecoderBlock(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_mem=True, rope=None):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.cross_attn = CrossAttention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        self.norm3 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.norm_y = norm_layer(dim) if norm_mem else nn.Identity()

    def forward(self, x, y, xpos, ypos):
        x = x + self.drop_path(self.attn(self.norm1(x), xpos))
        y_ = self.norm_y(y)
        x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos))
        x = x + self.drop_path(self.mlp(self.norm3(x)))
        return x, y
        
        
# patch embedding
class PositionGetter(object):
    """ return positions of patches """

    def __init__(self):
        self.cache_positions = {}
        
    def __call__(self, b, h, w, device):
        if not (h,w) in self.cache_positions:
            x = torch.arange(w, device=device)
            y = torch.arange(h, device=device)
            self.cache_positions[h,w] = torch.cartesian_prod(y, x) # (h, w, 2)
        pos = self.cache_positions[h,w].view(1, h*w, 2).expand(b, -1, 2).clone()
        return pos

class PatchEmbed(nn.Module):
    """ just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed"""

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.flatten = flatten

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
        
        self.position_getter = PositionGetter()
        
    def forward(self, x):
        B, C, H, W = x.shape
        torch._assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).")
        torch._assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).")
        x = self.proj(x)
        pos = self.position_getter(B, x.size(2), x.size(3), x.device)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x, pos
        
    def _init_weights(self):
        w = self.proj.weight.data
        torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))