File size: 5,222 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import torch
from dkm.utils import *
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F

class Megadepth1500Benchmark:
    def __init__(self, data_root="data/megadepth", scene_names = None) -> None:
        if scene_names is None:
            self.scene_names = [
                "0015_0.1_0.3.npz",
                "0015_0.3_0.5.npz",
                "0022_0.1_0.3.npz",
                "0022_0.3_0.5.npz",
                "0022_0.5_0.7.npz",
            ]
        else:
            self.scene_names = scene_names
        self.scenes = [
            np.load(f"{data_root}/{scene}", allow_pickle=True)
            for scene in self.scene_names
        ]
        self.data_root = data_root

    def benchmark(self, model):
        with torch.no_grad():
            data_root = self.data_root
            tot_e_t, tot_e_R, tot_e_pose = [], [], []
            for scene_ind in range(len(self.scenes)):
                scene = self.scenes[scene_ind]
                pairs = scene["pair_infos"]
                intrinsics = scene["intrinsics"]
                poses = scene["poses"]
                im_paths = scene["image_paths"]
                pair_inds = range(len(pairs))
                for pairind in tqdm(pair_inds):
                    idx1, idx2 = pairs[pairind][0]
                    K1 = intrinsics[idx1].copy()
                    T1 = poses[idx1].copy()
                    R1, t1 = T1[:3, :3], T1[:3, 3]
                    K2 = intrinsics[idx2].copy()
                    T2 = poses[idx2].copy()
                    R2, t2 = T2[:3, :3], T2[:3, 3]
                    R, t = compute_relative_pose(R1, t1, R2, t2)
                    im1_path = f"{data_root}/{im_paths[idx1]}"
                    im2_path = f"{data_root}/{im_paths[idx2]}"
                    im1 = Image.open(im1_path)
                    w1, h1 = im1.size
                    im2 = Image.open(im2_path)
                    w2, h2 = im2.size
                    scale1 = 1200 / max(w1, h1)
                    scale2 = 1200 / max(w2, h2)
                    w1, h1 = scale1 * w1, scale1 * h1
                    w2, h2 = scale2 * w2, scale2 * h2
                    K1[:2] = K1[:2] * scale1
                    K2[:2] = K2[:2] * scale2
                    dense_matches, dense_certainty = model.match(im1_path, im2_path)
                    sparse_matches,_ = model.sample(
                        dense_matches, dense_certainty, 5000
                    )
                    kpts1 = sparse_matches[:, :2]
                    kpts1 = (
                        torch.stack(
                            (
                                w1 * (kpts1[:, 0] + 1) / 2,
                                h1 * (kpts1[:, 1] + 1) / 2,
                            ),
                            axis=-1,
                        )
                    )
                    kpts2 = sparse_matches[:, 2:]
                    kpts2 = (
                        torch.stack(
                            (
                                w2 * (kpts2[:, 0] + 1) / 2,
                                h2 * (kpts2[:, 1] + 1) / 2,
                            ),
                            axis=-1,
                        )
                    )
                    for _ in range(5):
                        shuffling = np.random.permutation(np.arange(len(kpts1)))
                        kpts1 = kpts1[shuffling]
                        kpts2 = kpts2[shuffling]
                        try:
                            norm_threshold = 0.5 / (
                            np.mean(np.abs(K1[:2, :2])) + np.mean(np.abs(K2[:2, :2])))
                            R_est, t_est, mask = estimate_pose(
                                kpts1.cpu().numpy(),
                                kpts2.cpu().numpy(),
                                K1,
                                K2,
                                norm_threshold,
                                conf=0.99999,
                            )
                            T1_to_2_est = np.concatenate((R_est, t_est), axis=-1)  #
                            e_t, e_R = compute_pose_error(T1_to_2_est, R, t)
                            e_pose = max(e_t, e_R)
                        except Exception as e:
                            print(repr(e))
                            e_t, e_R = 90, 90
                            e_pose = max(e_t, e_R)
                        tot_e_t.append(e_t)
                        tot_e_R.append(e_R)
                        tot_e_pose.append(e_pose)
            tot_e_pose = np.array(tot_e_pose)
            thresholds = [5, 10, 20]
            auc = pose_auc(tot_e_pose, thresholds)
            acc_5 = (tot_e_pose < 5).mean()
            acc_10 = (tot_e_pose < 10).mean()
            acc_15 = (tot_e_pose < 15).mean()
            acc_20 = (tot_e_pose < 20).mean()
            map_5 = acc_5
            map_10 = np.mean([acc_5, acc_10])
            map_20 = np.mean([acc_5, acc_10, acc_15, acc_20])
            return {
                "auc_5": auc[0],
                "auc_10": auc[1],
                "auc_20": auc[2],
                "map_5": map_5,
                "map_10": map_10,
                "map_20": map_20,
            }