Spaces:
Running
Running
File size: 10,096 Bytes
6947ac9 e64cfb1 6947ac9 e64cfb1 6947ac9 e64cfb1 6947ac9 e64cfb1 6947ac9 65892e2 6947ac9 3e3d5ea 6947ac9 65892e2 e64cfb1 6947ac9 65892e2 6947ac9 3e3d5ea 6947ac9 e64cfb1 6947ac9 e64cfb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import warnings
from pathlib import Path
from typing import Any, Dict, Optional
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from hloc import extract_features, logger, match_dense, match_features
from hloc.utils.viz import add_text, plot_keypoints
from .utils import (
ROOT,
filter_matches,
get_feature_model,
get_model,
load_config,
)
from .viz import display_matches, fig2im, plot_images
warnings.simplefilter("ignore")
class ImageMatchingAPI(torch.nn.Module):
default_conf = {
"ransac": {
"enable": True,
"estimator": "poselib",
"geometry": "homography",
"method": "RANSAC",
"reproj_threshold": 3,
"confidence": 0.9999,
"max_iter": 10000,
},
}
def __init__(
self,
conf: dict = {},
device: str = "cpu",
detect_threshold: float = 0.015,
max_keypoints: int = 1024,
match_threshold: float = 0.2,
) -> None:
"""
Initializes an instance of the ImageMatchingAPI class.
Args:
conf (dict): A dictionary containing the configuration parameters.
device (str, optional): The device to use for computation. Defaults to "cpu".
detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015.
max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024.
match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2.
Returns:
None
"""
super().__init__()
self.device = device
self.conf = {**self.default_conf, **conf}
self._updata_config(detect_threshold, max_keypoints, match_threshold)
self._init_models()
if device == "cuda":
memory_allocated = torch.cuda.memory_allocated(device)
memory_reserved = torch.cuda.memory_reserved(device)
logger.info(
f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB"
)
logger.info(
f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB"
)
self.pred = None
def parse_match_config(self, conf):
if conf["dense"]:
return {
**conf,
"matcher": match_dense.confs.get(
conf["matcher"]["model"]["name"]
),
"dense": True,
}
else:
return {
**conf,
"feature": extract_features.confs.get(
conf["feature"]["model"]["name"]
),
"matcher": match_features.confs.get(
conf["matcher"]["model"]["name"]
),
"dense": False,
}
def _updata_config(
self,
detect_threshold: float = 0.015,
max_keypoints: int = 1024,
match_threshold: float = 0.2,
):
self.dense = self.conf["dense"]
if self.conf["dense"]:
try:
self.conf["matcher"]["model"][
"match_threshold"
] = match_threshold
except TypeError as e:
logger.error(e)
else:
self.conf["feature"]["model"]["max_keypoints"] = max_keypoints
self.conf["feature"]["model"][
"keypoint_threshold"
] = detect_threshold
self.extract_conf = self.conf["feature"]
self.match_conf = self.conf["matcher"]
def _init_models(self):
# initialize matcher
self.matcher = get_model(self.match_conf)
# initialize extractor
if self.dense:
self.extractor = None
else:
self.extractor = get_feature_model(self.conf["feature"])
def _forward(self, img0, img1):
if self.dense:
pred = match_dense.match_images(
self.matcher,
img0,
img1,
self.match_conf["preprocessing"],
device=self.device,
)
last_fixed = "{}".format( # noqa: F841
self.match_conf["model"]["name"]
)
else:
pred0 = extract_features.extract(
self.extractor, img0, self.extract_conf["preprocessing"]
)
pred1 = extract_features.extract(
self.extractor, img1, self.extract_conf["preprocessing"]
)
pred = match_features.match_images(self.matcher, pred0, pred1)
return pred
@torch.inference_mode()
def forward(
self,
img0: np.ndarray,
img1: np.ndarray,
) -> Dict[str, np.ndarray]:
"""
Forward pass of the image matching API.
Args:
img0: A 3D NumPy array of shape (H, W, C) representing the first image.
Values are in the range [0, 1] and are in RGB mode.
img1: A 3D NumPy array of shape (H, W, C) representing the second image.
Values are in the range [0, 1] and are in RGB mode.
Returns:
A dictionary containing the following keys:
- image0_orig: The original image 0.
- image1_orig: The original image 1.
- keypoints0_orig: The keypoints detected in image 0.
- keypoints1_orig: The keypoints detected in image 1.
- mkeypoints0_orig: The raw matches between image 0 and image 1.
- mkeypoints1_orig: The raw matches between image 1 and image 0.
- mmkeypoints0_orig: The RANSAC inliers in image 0.
- mmkeypoints1_orig: The RANSAC inliers in image 1.
- mconf: The confidence scores for the raw matches.
- mmconf: The confidence scores for the RANSAC inliers.
"""
# Take as input a pair of images (not a batch)
assert isinstance(img0, np.ndarray)
assert isinstance(img1, np.ndarray)
self.pred = self._forward(img0, img1)
if self.conf["ransac"]["enable"]:
self.pred = self._geometry_check(self.pred)
return self.pred
def _geometry_check(
self,
pred: Dict[str, Any],
) -> Dict[str, Any]:
"""
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
If lines are available, filter by lines. If both keypoints and lines are
available, filter by keypoints.
Args:
pred (Dict[str, Any]): dict of matches, including original keypoints.
See :func:`filter_matches` for the expected keys.
Returns:
Dict[str, Any]: filtered matches
"""
pred = filter_matches(
pred,
ransac_method=self.conf["ransac"]["method"],
ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"],
ransac_confidence=self.conf["ransac"]["confidence"],
ransac_max_iter=self.conf["ransac"]["max_iter"],
)
return pred
def visualize(
self,
log_path: Optional[Path] = None,
) -> None:
"""
Visualize the matches.
Args:
log_path (Path, optional): The directory to save the images. Defaults to None.
Returns:
None
"""
if self.conf["dense"]:
postfix = str(self.conf["matcher"]["model"]["name"])
else:
postfix = "{}_{}".format(
str(self.conf["feature"]["model"]["name"]),
str(self.conf["matcher"]["model"]["name"]),
)
titles = [
"Image 0 - Keypoints",
"Image 1 - Keypoints",
]
pred: Dict[str, Any] = self.pred
image0: np.ndarray = pred["image0_orig"]
image1: np.ndarray = pred["image1_orig"]
output_keypoints: np.ndarray = plot_images(
[image0, image1], titles=titles, dpi=300
)
if (
"keypoints0_orig" in pred.keys()
and "keypoints1_orig" in pred.keys()
):
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
text: str = (
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
)
add_text(0, text, fs=15)
output_keypoints = fig2im(output_keypoints)
# plot images with raw matches
titles = [
"Image 0 - Raw matched keypoints",
"Image 1 - Raw matched keypoints",
]
output_matches_raw, num_matches_raw = display_matches(
pred, titles=titles, tag="KPTS_RAW"
)
# plot images with ransac matches
titles = [
"Image 0 - Ransac matched keypoints",
"Image 1 - Ransac matched keypoints",
]
output_matches_ransac, num_matches_ransac = display_matches(
pred, titles=titles, tag="KPTS_RANSAC"
)
if log_path is not None:
img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png"
img_matches_raw_path: Path = (
log_path / f"img_matches_raw_{postfix}.png"
)
img_matches_ransac_path: Path = (
log_path / f"img_matches_ransac_{postfix}.png"
)
cv2.imwrite(
str(img_keypoints_path),
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
)
cv2.imwrite(
str(img_matches_raw_path),
output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR
)
cv2.imwrite(
str(img_matches_ransac_path),
output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR
)
plt.close("all")
if __name__ == "__main__":
config = load_config(ROOT / "common/config.yaml")
api = ImageMatchingAPI(config)
|