File size: 18,086 Bytes
9223079
e64cfb1
 
9223079
 
e64cfb1
 
9223079
e64cfb1
9223079
 
e64cfb1
9223079
e64cfb1
 
9223079
 
e64cfb1
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f269db9
9223079
 
 
 
 
 
f269db9
9223079
 
 
f269db9
9223079
 
 
 
 
 
 
f269db9
9223079
 
 
f269db9
9223079
 
 
 
 
 
63932be
 
 
 
 
 
 
 
 
 
 
 
9223079
f269db9
9223079
 
789fb0a
9223079
 
 
 
 
 
 
 
 
 
 
 
f269db9
9223079
789fb0a
 
9223079
 
 
 
 
 
 
 
 
 
 
 
f269db9
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
f269db9
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
f269db9
9223079
 
 
 
 
 
 
 
 
8371c0c
 
 
 
 
 
 
 
 
 
1d08acf
9223079
f269db9
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f269db9
9223079
 
 
 
 
 
 
 
 
 
 
f269db9
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f269db9
9223079
 
 
 
 
 
 
f269db9
9223079
 
 
 
 
 
f269db9
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64cfb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f269db9
 
 
9223079
 
 
 
 
f269db9
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f269db9
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64cfb1
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f269db9
 
9223079
 
 
 
 
 
 
f269db9
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f269db9
 
 
 
9223079
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import argparse
import collections.abc as collections
import pprint
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Optional, Union

import cv2
import h5py
import numpy as np
import PIL.Image
import torch
import torchvision.transforms.functional as F
from tqdm import tqdm

from . import extractors, logger
from .utils.base_model import dynamic_load
from .utils.io import list_h5_names, read_image
from .utils.parsers import parse_image_lists

"""
A set of standard configurations that can be directly selected from the command
line using their name. Each is a dictionary with the following entries:
    - output: the name of the feature file that will be generated.
    - model: the model configuration, as passed to a feature extractor.
    - preprocessing: how to preprocess the images read from disk.
"""
confs = {
    "superpoint_aachen": {
        "output": "feats-superpoint-n4096-r1024",
        "model": {
            "name": "superpoint",
            "nms_radius": 3,
            "max_keypoints": 4096,
            "keypoint_threshold": 0.005,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1600,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    # Resize images to 1600px even if they are originally smaller.
    # Improves the keypoint localization if the images are of good quality.
    "superpoint_max": {
        "output": "feats-superpoint-n4096-rmax1600",
        "model": {
            "name": "superpoint",
            "nms_radius": 3,
            "max_keypoints": 4096,
            "keypoint_threshold": 0.005,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1600,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "superpoint_inloc": {
        "output": "feats-superpoint-n4096-r1600",
        "model": {
            "name": "superpoint",
            "nms_radius": 4,
            "max_keypoints": 4096,
            "keypoint_threshold": 0.005,
        },
        "preprocessing": {
            "grayscale": True,
            "resize_max": 1600,
        },
    },
    "r2d2": {
        "output": "feats-r2d2-n5000-r1024",
        "model": {
            "name": "r2d2",
            "max_keypoints": 5000,
            "reliability_threshold": 0.7,
            "repetability_threshold": 0.7,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1024,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "d2net-ss": {
        "output": "feats-d2net-ss-n5000-r1600",
        "model": {
            "name": "d2net",
            "multiscale": False,
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 1600,
        },
    },
    "d2net-ms": {
        "output": "feats-d2net-ms-n5000-r1600",
        "model": {
            "name": "d2net",
            "multiscale": True,
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 1600,
        },
    },
    "rord": {
        "output": "feats-rord-ss-n5000-r1600",
        "model": {
            "name": "rord",
            "multiscale": False,
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 1600,
        },
    },
    "rootsift": {
        "output": "feats-rootsift-n5000-r1600",
        "model": {
            "name": "dog",
            "descriptor": "rootsift",
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1600,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "sift": {
        "output": "feats-sift-n5000-r1600",
        "model": {
            "name": "sift",
            "rootsift": True,
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1600,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "sosnet": {
        "output": "feats-sosnet-n5000-r1600",
        "model": {
            "name": "dog",
            "descriptor": "sosnet",
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": True,
            "resize_max": 1600,
            "force_resize": True,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "hardnet": {
        "output": "feats-hardnet-n5000-r1600",
        "model": {
            "name": "dog",
            "descriptor": "hardnet",
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": True,
            "resize_max": 1600,
            "force_resize": True,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "disk": {
        "output": "feats-disk-n5000-r1600",
        "model": {
            "name": "disk",
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 1600,
        },
    },
    "xfeat": {
        "output": "feats-xfeat-n5000-r1600",
        "model": {
            "name": "xfeat",
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 1600,
        },
    },
    "alike": {
        "output": "feats-alike-n5000-r1600",
        "model": {
            "name": "alike",
            "max_keypoints": 5000,
            "use_relu": True,
            "multiscale": False,
            "detection_threshold": 0.5,
            "top_k": -1,
            "sub_pixel": False,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 1600,
        },
    },
    "lanet": {
        "output": "feats-lanet-n5000-r1600",
        "model": {
            "name": "lanet",
            "keypoint_threshold": 0.1,
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 1600,
        },
    },
    "darkfeat": {
        "output": "feats-darkfeat-n5000-r1600",
        "model": {
            "name": "darkfeat",
            "max_keypoints": 5000,
            "reliability_threshold": 0.7,
            "repetability_threshold": 0.7,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1600,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "dedode": {
        "output": "feats-dedode-n5000-r1600",
        "model": {
            "name": "dedode",
            "max_keypoints": 5000,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1600,
            "width": 768,
            "height": 768,
            "dfactor": 8,
        },
    },
    "example": {
        "output": "feats-example-n2000-r1024",
        "model": {
            "name": "example",
            "keypoint_threshold": 0.1,
            "max_keypoints": 2000,
            "model_name": "model.pth",
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1024,
            "width": 768,
            "height": 768,
            "dfactor": 8,
        },
    },
    "sfd2": {
        "output": "feats-sfd2-n4096-r1600",
        "model": {
            "name": "sfd2",
            "max_keypoints": 4096,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1600,
            "width": 640,
            "height": 480,
            "conf_th": 0.001,
            "multiscale": False,
            "scales": [1.0],
        },
    },
    # Global descriptors
    "dir": {
        "output": "global-feats-dir",
        "model": {"name": "dir"},
        "preprocessing": {"resize_max": 1024},
    },
    "netvlad": {
        "output": "global-feats-netvlad",
        "model": {"name": "netvlad"},
        "preprocessing": {"resize_max": 1024},
    },
    "openibl": {
        "output": "global-feats-openibl",
        "model": {"name": "openibl"},
        "preprocessing": {"resize_max": 1024},
    },
    "cosplace": {
        "output": "global-feats-cosplace",
        "model": {"name": "cosplace"},
        "preprocessing": {"resize_max": 1024},
    },
}


def resize_image(image, size, interp):
    if interp.startswith("cv2_"):
        interp = getattr(cv2, "INTER_" + interp[len("cv2_") :].upper())
        h, w = image.shape[:2]
        if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]):
            interp = cv2.INTER_LINEAR
        resized = cv2.resize(image, size, interpolation=interp)
    elif interp.startswith("pil_"):
        interp = getattr(PIL.Image, interp[len("pil_") :].upper())
        resized = PIL.Image.fromarray(image.astype(np.uint8))
        resized = resized.resize(size, resample=interp)
        resized = np.asarray(resized, dtype=image.dtype)
    else:
        raise ValueError(f"Unknown interpolation {interp}.")
    return resized


class ImageDataset(torch.utils.data.Dataset):
    default_conf = {
        "globs": ["*.jpg", "*.png", "*.jpeg", "*.JPG", "*.PNG"],
        "grayscale": False,
        "resize_max": None,
        "force_resize": False,
        "interpolation": "cv2_area",  # pil_linear is more accurate but slower
    }

    def __init__(self, root, conf, paths=None):
        self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
        self.root = root

        if paths is None:
            paths = []
            for g in conf.globs:
                paths += list(Path(root).glob("**/" + g))
            if len(paths) == 0:
                raise ValueError(f"Could not find any image in root: {root}.")
            paths = sorted(list(set(paths)))
            self.names = [i.relative_to(root).as_posix() for i in paths]
            logger.info(f"Found {len(self.names)} images in root {root}.")
        else:
            if isinstance(paths, (Path, str)):
                self.names = parse_image_lists(paths)
            elif isinstance(paths, collections.Iterable):
                self.names = [
                    p.as_posix() if isinstance(p, Path) else p for p in paths
                ]
            else:
                raise ValueError(f"Unknown format for path argument {paths}.")

            for name in self.names:
                if not (root / name).exists():
                    raise ValueError(
                        f"Image {name} does not exists in root: {root}."
                    )

    def __getitem__(self, idx):
        name = self.names[idx]
        image = read_image(self.root / name, self.conf.grayscale)
        image = image.astype(np.float32)
        size = image.shape[:2][::-1]

        if self.conf.resize_max and (
            self.conf.force_resize or max(size) > self.conf.resize_max
        ):
            scale = self.conf.resize_max / max(size)
            size_new = tuple(int(round(x * scale)) for x in size)
            image = resize_image(image, size_new, self.conf.interpolation)

        if self.conf.grayscale:
            image = image[None]
        else:
            image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
        image = image / 255.0

        data = {
            "image": image,
            "original_size": np.array(size),
        }
        return data

    def __len__(self):
        return len(self.names)


def extract(model, image_0, conf):
    default_conf = {
        "grayscale": True,
        "resize_max": 1024,
        "dfactor": 8,
        "cache_images": False,
        "force_resize": False,
        "width": 320,
        "height": 240,
        "interpolation": "cv2_area",
    }
    conf = SimpleNamespace(**{**default_conf, **conf})
    device = "cuda" if torch.cuda.is_available() else "cpu"

    def preprocess(image: np.ndarray, conf: SimpleNamespace):
        image = image.astype(np.float32, copy=False)
        size = image.shape[:2][::-1]
        scale = np.array([1.0, 1.0])
        if conf.resize_max:
            scale = conf.resize_max / max(size)
            if scale < 1.0:
                size_new = tuple(int(round(x * scale)) for x in size)
                image = resize_image(image, size_new, "cv2_area")
                scale = np.array(size) / np.array(size_new)
        if conf.force_resize:
            image = resize_image(image, (conf.width, conf.height), "cv2_area")
            size_new = (conf.width, conf.height)
            scale = np.array(size) / np.array(size_new)
        if conf.grayscale:
            assert image.ndim == 2, image.shape
            image = image[None]
        else:
            image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
        image = torch.from_numpy(image / 255.0).float()

        # assure that the size is divisible by dfactor
        size_new = tuple(
            map(
                lambda x: int(x // conf.dfactor * conf.dfactor),
                image.shape[-2:],
            )
        )
        image = F.resize(image, size=size_new, antialias=True)
        input_ = image.to(device, non_blocking=True)[None]
        data = {
            "image": input_,
            "image_orig": image_0,
            "original_size": np.array(size),
            "size": np.array(image.shape[1:][::-1]),
        }
        return data

    # convert to grayscale if needed
    if len(image_0.shape) == 3 and conf.grayscale:
        image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY)
    else:
        image0 = image_0
    # comment following lines, image is always RGB mode
    # if not conf.grayscale and len(image_0.shape) == 3:
    #     image0 = image_0[:, :, ::-1]  # BGR to RGB
    data = preprocess(image0, conf)
    pred = model({"image": data["image"]})
    pred["image_size"] = data["original_size"]
    pred = {**pred, **data}
    return pred


@torch.no_grad()
def main(
    conf: Dict,
    image_dir: Path,
    export_dir: Optional[Path] = None,
    as_half: bool = True,
    image_list: Optional[Union[Path, List[str]]] = None,
    feature_path: Optional[Path] = None,
    overwrite: bool = False,
) -> Path:
    logger.info(
        "Extracting local features with configuration:"
        f"\n{pprint.pformat(conf)}"
    )

    dataset = ImageDataset(image_dir, conf["preprocessing"], image_list)
    if feature_path is None:
        feature_path = Path(export_dir, conf["output"] + ".h5")
    feature_path.parent.mkdir(exist_ok=True, parents=True)
    skip_names = set(
        list_h5_names(feature_path)
        if feature_path.exists() and not overwrite
        else ()
    )
    dataset.names = [n for n in dataset.names if n not in skip_names]
    if len(dataset.names) == 0:
        logger.info("Skipping the extraction.")
        return feature_path

    device = "cuda" if torch.cuda.is_available() else "cpu"
    Model = dynamic_load(extractors, conf["model"]["name"])
    model = Model(conf["model"]).eval().to(device)

    loader = torch.utils.data.DataLoader(
        dataset, num_workers=1, shuffle=False, pin_memory=True
    )
    for idx, data in enumerate(tqdm(loader)):
        name = dataset.names[idx]
        pred = model({"image": data["image"].to(device, non_blocking=True)})
        pred = {k: v[0].cpu().numpy() for k, v in pred.items()}

        pred["image_size"] = original_size = data["original_size"][0].numpy()
        if "keypoints" in pred:
            size = np.array(data["image"].shape[-2:][::-1])
            scales = (original_size / size).astype(np.float32)
            pred["keypoints"] = (pred["keypoints"] + 0.5) * scales[None] - 0.5
            if "scales" in pred:
                pred["scales"] *= scales.mean()
            # add keypoint uncertainties scaled to the original resolution
            uncertainty = getattr(model, "detection_noise", 1) * scales.mean()

        if as_half:
            for k in pred:
                dt = pred[k].dtype
                if (dt == np.float32) and (dt != np.float16):
                    pred[k] = pred[k].astype(np.float16)

        with h5py.File(str(feature_path), "a", libver="latest") as fd:
            try:
                if name in fd:
                    del fd[name]
                grp = fd.create_group(name)
                for k, v in pred.items():
                    grp.create_dataset(k, data=v)
                if "keypoints" in pred:
                    grp["keypoints"].attrs["uncertainty"] = uncertainty
            except OSError as error:
                if "No space left on device" in error.args[0]:
                    logger.error(
                        "Out of disk space: storing features on disk can take "
                        "significant space, did you enable the as_half flag?"
                    )
                    del grp, fd[name]
                raise error

        del pred

    logger.info("Finished exporting features.")
    return feature_path


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--image_dir", type=Path, required=True)
    parser.add_argument("--export_dir", type=Path, required=True)
    parser.add_argument(
        "--conf",
        type=str,
        default="superpoint_aachen",
        choices=list(confs.keys()),
    )
    parser.add_argument("--as_half", action="store_true")
    parser.add_argument("--image_list", type=Path)
    parser.add_argument("--feature_path", type=Path)
    args = parser.parse_args()
    main(confs[args.conf], args.image_dir, args.export_dir, args.as_half)