File size: 4,595 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import collections.abc as collections
from pathlib import Path
from typing import Optional, Tuple

import cv2
import kornia
import numpy as np
import torch
from omegaconf import OmegaConf


class ImagePreprocessor:
    default_conf = {
        "resize": None,  # target edge length, None for no resizing
        "edge_divisible_by": None,
        "side": "long",
        "interpolation": "bilinear",
        "align_corners": None,
        "antialias": True,
        "square_pad": False,
        "add_padding_mask": False,
    }

    def __init__(self, conf) -> None:
        super().__init__()
        default_conf = OmegaConf.create(self.default_conf)
        OmegaConf.set_struct(default_conf, True)
        self.conf = OmegaConf.merge(default_conf, conf)

    def __call__(self, img: torch.Tensor, interpolation: Optional[str] = None) -> dict:
        """Resize and preprocess an image, return image and resize scale"""
        h, w = img.shape[-2:]
        size = h, w
        if self.conf.resize is not None:
            if interpolation is None:
                interpolation = self.conf.interpolation
            size = self.get_new_image_size(h, w)
            img = kornia.geometry.transform.resize(
                img,
                size,
                side=self.conf.side,
                antialias=self.conf.antialias,
                align_corners=self.conf.align_corners,
                interpolation=interpolation,
            )
        scale = torch.Tensor([img.shape[-1] / w, img.shape[-2] / h]).to(img)
        T = np.diag([scale[0], scale[1], 1])

        data = {
            "scales": scale,
            "image_size": np.array(size[::-1]),
            "transform": T,
            "original_image_size": np.array([w, h]),
        }
        if self.conf.square_pad:
            sl = max(img.shape[-2:])
            data["image"] = torch.zeros(
                *img.shape[:-2], sl, sl, device=img.device, dtype=img.dtype
            )
            data["image"][:, : img.shape[-2], : img.shape[-1]] = img
            if self.conf.add_padding_mask:
                data["padding_mask"] = torch.zeros(
                    *img.shape[:-3], 1, sl, sl, device=img.device, dtype=torch.bool
                )
                data["padding_mask"][:, : img.shape[-2], : img.shape[-1]] = True

        else:
            data["image"] = img
        return data

    def load_image(self, image_path: Path) -> dict:
        return self(load_image(image_path))

    def get_new_image_size(
        self,
        h: int,
        w: int,
    ) -> Tuple[int, int]:
        side = self.conf.side
        if isinstance(self.conf.resize, collections.Iterable):
            assert len(self.conf.resize) == 2
            return tuple(self.conf.resize)
        side_size = self.conf.resize
        aspect_ratio = w / h
        if side not in ("short", "long", "vert", "horz"):
            raise ValueError(
                f"side can be one of 'short', 'long', 'vert', and 'horz'. Got '{side}'"
            )
        if side == "vert":
            size = side_size, int(side_size * aspect_ratio)
        elif side == "horz":
            size = int(side_size / aspect_ratio), side_size
        elif (side == "short") ^ (aspect_ratio < 1.0):
            size = side_size, int(side_size * aspect_ratio)
        else:
            size = int(side_size / aspect_ratio), side_size

        if self.conf.edge_divisible_by is not None:
            df = self.conf.edge_divisible_by
            size = list(map(lambda x: int(x // df * df), size))
        return size


def read_image(path: Path, grayscale: bool = False) -> np.ndarray:
    """Read an image from path as RGB or grayscale"""
    if not Path(path).exists():
        raise FileNotFoundError(f"No image at path {path}.")
    mode = cv2.IMREAD_GRAYSCALE if grayscale else cv2.IMREAD_COLOR
    image = cv2.imread(str(path), mode)
    if image is None:
        raise IOError(f"Could not read image at {path}.")
    if not grayscale:
        image = image[..., ::-1]
    return image


def numpy_image_to_torch(image: np.ndarray) -> torch.Tensor:
    """Normalize the image tensor and reorder the dimensions."""
    if image.ndim == 3:
        image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
    elif image.ndim == 2:
        image = image[None]  # add channel axis
    else:
        raise ValueError(f"Not an image: {image.shape}")
    return torch.tensor(image / 255.0, dtype=torch.float)


def load_image(path: Path, grayscale=False) -> torch.Tensor:
    image = read_image(path, grayscale=grayscale)
    return numpy_image_to_torch(image)