File size: 15,740 Bytes
7b977a8
 
9223079
7b977a8
 
9223079
7b977a8
9223079
 
 
7b977a8
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
9223079
 
 
 
 
 
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
9223079
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import os
import random
import numpy as np
import torch
from itertools import combinations
import cv2
import gradio as gr
from hloc import matchers, extractors
from hloc.utils.base_model import dynamic_load
from hloc import match_dense, match_features, extract_features
from .viz import draw_matches, fig2im, plot_images, plot_color_line_matches

device = "cuda" if torch.cuda.is_available() else "cpu"


def get_model(match_conf):
    Model = dynamic_load(matchers, match_conf["model"]["name"])
    model = Model(match_conf["model"]).eval().to(device)
    return model


def get_feature_model(conf):
    Model = dynamic_load(extractors, conf["model"]["name"])
    model = Model(conf["model"]).eval().to(device)
    return model


def gen_examples():
    random.seed(1)
    example_matchers = [
        "disk+lightglue",
        "loftr",
        "disk",
        "d2net",
        "topicfm",
        "superpoint+superglue",
        "disk+dualsoftmax",
        "lanet",
    ]

    def gen_images_pairs(path: str, count: int = 5):
        imgs_list = [
            os.path.join(path, file)
            for file in os.listdir(path)
            if file.lower().endswith((".jpg", ".jpeg", ".png"))
        ]
        pairs = list(combinations(imgs_list, 2))
        selected = random.sample(range(len(pairs)), count)
        return [pairs[i] for i in selected]
    # image pair path
    path = "datasets/sacre_coeur/mapping"
    pairs = gen_images_pairs(path, len(example_matchers))
    match_setting_threshold = 0.1
    match_setting_max_features = 2000
    detect_keypoints_threshold = 0.01
    enable_ransac = False
    ransac_method = "RANSAC"
    ransac_reproj_threshold = 8
    ransac_confidence = 0.999
    ransac_max_iter = 10000
    input_lists = []
    for pair, mt in zip(pairs, example_matchers):
        input_lists.append(
            [
                pair[0],
                pair[1],
                match_setting_threshold,
                match_setting_max_features,
                detect_keypoints_threshold,
                mt,
                enable_ransac,
                ransac_method,
                ransac_reproj_threshold,
                ransac_confidence,
                ransac_max_iter,
            ]
        )
    return input_lists


def filter_matches(
    pred,
    ransac_method="RANSAC",
    ransac_reproj_threshold=8,
    ransac_confidence=0.999,
    ransac_max_iter=10000,
):
    mkpts0 = None
    mkpts1 = None
    feature_type = None
    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        mkpts0 = pred["keypoints0_orig"]
        mkpts1 = pred["keypoints1_orig"]
        feature_type = "KEYPOINT"
    elif (
        "line_keypoints0_orig" in pred.keys()
        and "line_keypoints1_orig" in pred.keys()
    ):
        mkpts0 = pred["line_keypoints0_orig"]
        mkpts1 = pred["line_keypoints1_orig"]
        feature_type = "LINE"
    else:
        return pred
    if mkpts0 is None or mkpts0 is None:
        return pred
    if ransac_method not in ransac_zoo.keys():
        ransac_method = "RANSAC"
    H, mask = cv2.findHomography(
        mkpts0,
        mkpts1,
        method=ransac_zoo[ransac_method],
        ransacReprojThreshold=ransac_reproj_threshold,
        confidence=ransac_confidence,
        maxIters=ransac_max_iter,
    )
    mask = np.array(mask.ravel().astype("bool"), dtype="bool")
    if H is not None:
        if feature_type == "KEYPOINT":
            pred["keypoints0_orig"] = mkpts0[mask]
            pred["keypoints1_orig"] = mkpts1[mask]
            pred["mconf"] = pred["mconf"][mask]
        elif feature_type == "LINE":
            pred["line_keypoints0_orig"] = mkpts0[mask]
            pred["line_keypoints1_orig"] = mkpts1[mask]
    return pred


def compute_geom(
    pred,
    ransac_method="RANSAC",
    ransac_reproj_threshold=8,
    ransac_confidence=0.999,
    ransac_max_iter=10000,
) -> dict:
    mkpts0 = None
    mkpts1 = None

    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        mkpts0 = pred["keypoints0_orig"]
        mkpts1 = pred["keypoints1_orig"]

    if (
        "line_keypoints0_orig" in pred.keys()
        and "line_keypoints1_orig" in pred.keys()
    ):
        mkpts0 = pred["line_keypoints0_orig"]
        mkpts1 = pred["line_keypoints1_orig"]

    if mkpts0 is not None and mkpts1 is not None:
        if len(mkpts0) < 8:
            return {}
        h1, w1, _ = pred["image0_orig"].shape
        geo_info = {}
        F, inliers = cv2.findFundamentalMat(
            mkpts0,
            mkpts1,
            method=ransac_zoo[ransac_method],
            ransacReprojThreshold=ransac_reproj_threshold,
            confidence=ransac_confidence,
            maxIters=ransac_max_iter,
        )
        geo_info["Fundamental"] = F.tolist()
        H, _ = cv2.findHomography(
            mkpts1,
            mkpts0,
            method=ransac_zoo[ransac_method],
            ransacReprojThreshold=ransac_reproj_threshold,
            confidence=ransac_confidence,
            maxIters=ransac_max_iter,
        )
        geo_info["Homography"] = H.tolist()
        _, H1, H2 = cv2.stereoRectifyUncalibrated(
            mkpts0.reshape(-1, 2), mkpts1.reshape(-1, 2), F, imgSize=(w1, h1)
        )
        geo_info["H1"] = H1.tolist()
        geo_info["H2"] = H2.tolist()
        return geo_info
    else:
        return {}


def wrap_images(img0, img1, geo_info, geom_type):
    h1, w1, _ = img0.shape
    h2, w2, _ = img1.shape
    result_matrix = None
    if geo_info is not None and len(geo_info) != 0:
        rectified_image0 = img0
        rectified_image1 = None
        H = np.array(geo_info["Homography"])
        F = np.array(geo_info["Fundamental"])
        title = []
        if geom_type == "Homography":
            rectified_image1 = cv2.warpPerspective(
                img1, H, (img0.shape[1] + img1.shape[1], img0.shape[0])
            )
            result_matrix = H
            title = ["Image 0", "Image 1 - warped"]
        elif geom_type == "Fundamental":
            H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
            rectified_image0 = cv2.warpPerspective(img0, H1, (w1, h1))
            rectified_image1 = cv2.warpPerspective(img1, H2, (w2, h2))
            result_matrix = F
            title = ["Image 0 - warped", "Image 1 - warped"]
        else:
            print("Error: Unknown geometry type")
        fig = plot_images(
            [rectified_image0.squeeze(), rectified_image1.squeeze()],
            title,
            dpi=300,
        )
        dictionary = {
            "row1": result_matrix[0].tolist(),
            "row2": result_matrix[1].tolist(),
            "row3": result_matrix[2].tolist(),
        }
        return fig2im(fig), dictionary
    else:
        return None, None


def change_estimate_geom(input_image0, input_image1, matches_info, choice):
    if (
        matches_info is None
        or len(matches_info) < 1
        or "geom_info" not in matches_info.keys()
    ):
        return None, None
    geom_info = matches_info["geom_info"]
    wrapped_images = None
    if choice != "No":
        wrapped_images, _ = wrap_images(
            input_image0, input_image1, geom_info, choice
        )
        return wrapped_images, matches_info
    else:
        return None, None


def display_matches(pred: dict):
    img0 = pred["image0_orig"]
    img1 = pred["image1_orig"]

    num_inliers = 0
    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        mkpts0 = pred["keypoints0_orig"]
        mkpts1 = pred["keypoints1_orig"]
        num_inliers = len(mkpts0)
        if "mconf" in pred.keys():
            mconf = pred["mconf"]
        else:
            mconf = np.ones(len(mkpts0))
        fig_mkpts = draw_matches(
            mkpts0,
            mkpts1,
            img0,
            img1,
            mconf,
            dpi=300,
            titles=[
                "Image 0 - matched keypoints",
                "Image 1 - matched keypoints",
            ],
        )
        fig = fig_mkpts
    if "line0_orig" in pred.keys() and "line1_orig" in pred.keys():
        # lines
        mtlines0 = pred["line0_orig"]
        mtlines1 = pred["line1_orig"]
        num_inliers = len(mtlines0)
        fig_lines = plot_images(
            [img0.squeeze(), img1.squeeze()],
            ["Image 0 - matched lines", "Image 1 - matched lines"],
            dpi=300,
        )
        fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2)
        fig_lines = fig2im(fig_lines)

        # keypoints
        mkpts0 = pred["line_keypoints0_orig"]
        mkpts1 = pred["line_keypoints1_orig"]

        if mkpts0 is not None and mkpts1 is not None:
            num_inliers = len(mkpts0)
            if "mconf" in pred.keys():
                mconf = pred["mconf"]
            else:
                mconf = np.ones(len(mkpts0))
            fig_mkpts = draw_matches(mkpts0, mkpts1, img0, img1, mconf, dpi=300)
            fig_lines = cv2.resize(
                fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0])
            )
            fig = np.concatenate([fig_mkpts, fig_lines], axis=0)
        else:
            fig = fig_lines
    return fig, num_inliers


def run_matching(
    image0,
    image1,
    match_threshold,
    extract_max_keypoints,
    keypoint_threshold,
    key,
    enable_ransac=False,
    ransac_method="RANSAC",
    ransac_reproj_threshold=8,
    ransac_confidence=0.999,
    ransac_max_iter=10000,
    choice_estimate_geom="Homography",
):
    # image0 and image1 is RGB mode
    if image0 is None or image1 is None:
        raise gr.Error("Error: No images found! Please upload two images.")

    model = matcher_zoo[key]
    match_conf = model["config"]
    # update match config
    match_conf["model"]["match_threshold"] = match_threshold
    match_conf["model"]["max_keypoints"] = extract_max_keypoints

    matcher = get_model(match_conf)
    if model["dense"]:
        pred = match_dense.match_images(
            matcher, image0, image1, match_conf["preprocessing"], device=device
        )
        del matcher
        extract_conf = None
    else:
        extract_conf = model["config_feature"]
        # update extract config
        extract_conf["model"]["max_keypoints"] = extract_max_keypoints
        extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
        extractor = get_feature_model(extract_conf)
        pred0 = extract_features.extract(
            extractor, image0, extract_conf["preprocessing"]
        )
        pred1 = extract_features.extract(
            extractor, image1, extract_conf["preprocessing"]
        )
        pred = match_features.match_images(matcher, pred0, pred1)
        del extractor

    if enable_ransac:
        filter_matches(
            pred,
            ransac_method=ransac_method,
            ransac_reproj_threshold=ransac_reproj_threshold,
            ransac_confidence=ransac_confidence,
            ransac_max_iter=ransac_max_iter,
        )

    fig, num_inliers = display_matches(pred)
    geom_info = compute_geom(pred)
    output_wrapped, _ = change_estimate_geom(
        pred["image0_orig"],
        pred["image1_orig"],
        {"geom_info": geom_info},
        choice_estimate_geom,
    )
    del pred
    return (
        fig,
        {"matches number": num_inliers},
        {
            "match_conf": match_conf,
            "extractor_conf": extract_conf,
        },
        {
            "geom_info": geom_info,
        },
        output_wrapped,
        # geometry_result,
    )


# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
ransac_zoo = {
    "RANSAC": cv2.RANSAC,
    "USAC_MAGSAC": cv2.USAC_MAGSAC,
    "USAC_DEFAULT": cv2.USAC_DEFAULT,
    "USAC_FM_8PTS": cv2.USAC_FM_8PTS,
    "USAC_PROSAC": cv2.USAC_PROSAC,
    "USAC_FAST": cv2.USAC_FAST,
    "USAC_ACCURATE": cv2.USAC_ACCURATE,
    "USAC_PARALLEL": cv2.USAC_PARALLEL,
}

# Matchers collections
matcher_zoo = {
    "gluestick": {"config": match_dense.confs["gluestick"], "dense": True},
    "sold2": {"config": match_dense.confs["sold2"], "dense": True},
    # 'dedode-sparse': {
    #     'config': match_dense.confs['dedode_sparse'],
    #     'dense': True  # dense mode, we need 2 images
    # },
    "loftr": {"config": match_dense.confs["loftr"], "dense": True},
    "topicfm": {"config": match_dense.confs["topicfm"], "dense": True},
    "aspanformer": {"config": match_dense.confs["aspanformer"], "dense": True},
    "dedode": {
        "config": match_features.confs["Dual-Softmax"],
        "config_feature": extract_features.confs["dedode"],
        "dense": False,
    },
    "superpoint+superglue": {
        "config": match_features.confs["superglue"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "superpoint+lightglue": {
        "config": match_features.confs["superpoint-lightglue"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "disk": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["disk"],
        "dense": False,
    },
    "disk+dualsoftmax": {
        "config": match_features.confs["Dual-Softmax"],
        "config_feature": extract_features.confs["disk"],
        "dense": False,
    },
    "superpoint+dualsoftmax": {
        "config": match_features.confs["Dual-Softmax"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "disk+lightglue": {
        "config": match_features.confs["disk-lightglue"],
        "config_feature": extract_features.confs["disk"],
        "dense": False,
    },
    "superpoint+mnn": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "sift+sgmnet": {
        "config": match_features.confs["sgmnet"],
        "config_feature": extract_features.confs["sift"],
        "dense": False,
    },
    "sosnet": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["sosnet"],
        "dense": False,
    },
    "hardnet": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["hardnet"],
        "dense": False,
    },
    "d2net": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["d2net-ss"],
        "dense": False,
    },
    "d2net-ms": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["d2net-ms"],
        "dense": False,
    },
    "alike": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["alike"],
        "dense": False,
    },
    "lanet": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["lanet"],
        "dense": False,
    },
    "r2d2": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["r2d2"],
        "dense": False,
    },
    "darkfeat": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["darkfeat"],
        "dense": False,
    },
    "sift": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["sift"],
        "dense": False,
    },
    "roma": {"config": match_dense.confs["roma"], "dense": True},
    "DKMv3": {"config": match_dense.confs["dkm"], "dense": True},
}