File size: 4,227 Bytes
9223079
5bf9d48
 
9223079
5bf9d48
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf9d48
 
 
 
9223079
 
 
 
 
 
5bf9d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
5bf9d48
 
 
9223079
5bf9d48
 
 
 
 
 
 
 
 
 
 
 
9223079
5bf9d48
 
 
 
 
 
 
 
 
 
9223079
 
5bf9d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import glob
from pathlib import Path

from ... import (
    extract_features,
    localize_sfm,
    match_features,
    pairs_from_covisibility,
    pairs_from_retrieval,
    triangulation,
)
from . import colmap_from_nvm

CONDITIONS = [
    "dawn",
    "dusk",
    "night",
    "night-rain",
    "overcast-summer",
    "overcast-winter",
    "rain",
    "snow",
    "sun",
]


def generate_query_list(dataset, image_dir, path):
    h, w = 1024, 1024
    intrinsics_filename = "intrinsics/{}_intrinsics.txt"
    cameras = {}
    for side in ["left", "right", "rear"]:
        with open(dataset / intrinsics_filename.format(side), "r") as f:
            fx = f.readline().split()[1]
            fy = f.readline().split()[1]
            cx = f.readline().split()[1]
            cy = f.readline().split()[1]
            assert fx == fy
            params = ["SIMPLE_RADIAL", w, h, fx, cx, cy, 0.0]
            cameras[side] = [str(p) for p in params]

    queries = glob.glob((image_dir / "**/*.jpg").as_posix(), recursive=True)
    queries = [
        Path(q).relative_to(image_dir.parents[0]).as_posix() for q in sorted(queries)
    ]

    out = [[q] + cameras[Path(q).parent.name] for q in queries]
    with open(path, "w") as f:
        f.write("\n".join(map(" ".join, out)))


def run(args):
    # Setup the paths
    dataset = args.dataset
    images = dataset / "images/"

    outputs = args.outputs  # where everything will be saved
    outputs.mkdir(exist_ok=True, parents=True)
    query_list = outputs / "{condition}_queries_with_intrinsics.txt"
    sift_sfm = outputs / "sfm_sift"
    reference_sfm = outputs / "sfm_superpoint+superglue"
    sfm_pairs = outputs / f"pairs-db-covis{args.num_covis}.txt"
    loc_pairs = outputs / f"pairs-query-netvlad{args.num_loc}.txt"
    results = outputs / f"RobotCar_hloc_superpoint+superglue_netvlad{args.num_loc}.txt"

    # pick one of the configurations for extraction and matching
    retrieval_conf = extract_features.confs["netvlad"]
    feature_conf = extract_features.confs["superpoint_aachen"]
    matcher_conf = match_features.confs["superglue"]

    for condition in CONDITIONS:
        generate_query_list(
            dataset, images / condition, str(query_list).format(condition=condition)
        )

    features = extract_features.main(feature_conf, images, outputs, as_half=True)

    colmap_from_nvm.main(
        dataset / "3D-models/all-merged/all.nvm",
        dataset / "3D-models/overcast-reference.db",
        sift_sfm,
    )
    pairs_from_covisibility.main(sift_sfm, sfm_pairs, num_matched=args.num_covis)
    sfm_matches = match_features.main(
        matcher_conf, sfm_pairs, feature_conf["output"], outputs
    )

    triangulation.main(
        reference_sfm, sift_sfm, images, sfm_pairs, features, sfm_matches
    )

    global_descriptors = extract_features.main(retrieval_conf, images, outputs)
    # TODO: do per location and per camera
    pairs_from_retrieval.main(
        global_descriptors,
        loc_pairs,
        args.num_loc,
        query_prefix=CONDITIONS,
        db_model=reference_sfm,
    )
    loc_matches = match_features.main(
        matcher_conf, loc_pairs, feature_conf["output"], outputs
    )

    localize_sfm.main(
        reference_sfm,
        Path(str(query_list).format(condition="*")),
        loc_pairs,
        features,
        loc_matches,
        results,
        covisibility_clustering=False,
        prepend_camera_name=True,
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dataset",
        type=Path,
        default="datasets/robotcar",
        help="Path to the dataset, default: %(default)s",
    )
    parser.add_argument(
        "--outputs",
        type=Path,
        default="outputs/robotcar",
        help="Path to the output directory, default: %(default)s",
    )
    parser.add_argument(
        "--num_covis",
        type=int,
        default=20,
        help="Number of image pairs for SfM, default: %(default)s",
    )
    parser.add_argument(
        "--num_loc",
        type=int,
        default=20,
        help="Number of image pairs for loc, default: %(default)s",
    )
    args = parser.parse_args()