File size: 13,279 Bytes
c149df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import torch
from pathlib import Path
import math
import numpy as np

from torch import nn
from PIL import Image
from torchvision.transforms import ToTensor
from romatch.utils.kde import kde

class BasicLayer(nn.Module):
    """
        Basic Convolutional Layer: Conv2d -> BatchNorm -> ReLU
    """
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, bias=False, relu = True):
        super().__init__()
        self.layer = nn.Sequential(
                                        nn.Conv2d( in_channels, out_channels, kernel_size, padding = padding, stride=stride, dilation=dilation, bias = bias),
                                        nn.BatchNorm2d(out_channels, affine=False),
                                        nn.ReLU(inplace = True) if relu else nn.Identity()
                                    )

    def forward(self, x):
        return self.layer(x)

class TinyRoMa(nn.Module):
    """
        Implementation of architecture described in 
        "XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
    """

    def __init__(self, xfeat = None, 
                 freeze_xfeat = True, 
                 sample_mode = "threshold_balanced", 
                 symmetric = False, 
                 exact_softmax = False):
        super().__init__()
        del xfeat.heatmap_head, xfeat.keypoint_head, xfeat.fine_matcher
        if freeze_xfeat:
            xfeat.train(False)
            self.xfeat = [xfeat]# hide params from ddp
        else:
            self.xfeat = nn.ModuleList([xfeat])
        self.freeze_xfeat = freeze_xfeat
        match_dim = 256
        self.coarse_matcher = nn.Sequential(
            BasicLayer(64+64+2, match_dim,),
            BasicLayer(match_dim, match_dim,), 
            BasicLayer(match_dim, match_dim,), 
            BasicLayer(match_dim, match_dim,), 
            nn.Conv2d(match_dim, 3, kernel_size=1, bias=True, padding=0))
        fine_match_dim = 64
        self.fine_matcher = nn.Sequential(
            BasicLayer(24+24+2, fine_match_dim,),
            BasicLayer(fine_match_dim, fine_match_dim,), 
            BasicLayer(fine_match_dim, fine_match_dim,), 
            BasicLayer(fine_match_dim, fine_match_dim,), 
            nn.Conv2d(fine_match_dim, 3, kernel_size=1, bias=True, padding=0),)
        self.sample_mode = sample_mode
        self.sample_thresh = 0.05
        self.symmetric = symmetric
        self.exact_softmax = exact_softmax
    
    @property
    def device(self):
        return self.fine_matcher[-1].weight.device
    
    def preprocess_tensor(self, x):
        """ Guarantee that image is divisible by 32 to avoid aliasing artifacts. """
        H, W = x.shape[-2:]
        _H, _W = (H//32) * 32, (W//32) * 32
        rh, rw = H/_H, W/_W

        x = F.interpolate(x, (_H, _W), mode='bilinear', align_corners=False)
        return x, rh, rw        
    
    def forward_single(self, x):
        with torch.inference_mode(self.freeze_xfeat or not self.training):
            xfeat = self.xfeat[0]
            with torch.no_grad():
                x = x.mean(dim=1, keepdim = True)
                x = xfeat.norm(x)

            #main backbone
            x1 = xfeat.block1(x)
            x2 = xfeat.block2(x1 + xfeat.skip1(x))
            x3 = xfeat.block3(x2)
            x4 = xfeat.block4(x3)
            x5 = xfeat.block5(x4)
            x4 = F.interpolate(x4, (x3.shape[-2], x3.shape[-1]), mode='bilinear')
            x5 = F.interpolate(x5, (x3.shape[-2], x3.shape[-1]), mode='bilinear')
            feats = xfeat.block_fusion( x3 + x4 + x5 )
        if self.freeze_xfeat:
            return x2.clone(), feats.clone()
        return x2, feats

    def to_pixel_coordinates(self, coords, H_A, W_A, H_B = None, W_B = None):
        if coords.shape[-1] == 2:
            return self._to_pixel_coordinates(coords, H_A, W_A) 
        
        if isinstance(coords, (list, tuple)):
            kpts_A, kpts_B = coords[0], coords[1]
        else:
            kpts_A, kpts_B = coords[...,:2], coords[...,2:]
        return self._to_pixel_coordinates(kpts_A, H_A, W_A), self._to_pixel_coordinates(kpts_B, H_B, W_B)

    def _to_pixel_coordinates(self, coords, H, W):
        kpts = torch.stack((W/2 * (coords[...,0]+1), H/2 * (coords[...,1]+1)),axis=-1)
        return kpts
    
    def pos_embed(self, corr_volume: torch.Tensor):
        B, H1, W1, H0, W0 = corr_volume.shape 
        grid = torch.stack(
                torch.meshgrid(
                    torch.linspace(-1+1/W1,1-1/W1, W1), 
                    torch.linspace(-1+1/H1,1-1/H1, H1), 
                    indexing = "xy"), 
                dim = -1).float().to(corr_volume).reshape(H1*W1, 2)
        down = 4
        if not self.training and not self.exact_softmax:
            grid_lr = torch.stack(
                torch.meshgrid(
                    torch.linspace(-1+down/W1,1-down/W1, W1//down), 
                    torch.linspace(-1+down/H1,1-down/H1, H1//down), 
                    indexing = "xy"), 
                dim = -1).float().to(corr_volume).reshape(H1*W1 //down**2, 2)
            cv = corr_volume
            best_match = cv.reshape(B,H1*W1,H0,W0).argmax(dim=1) # B, HW, H, W
            P_lowres = torch.cat((cv[:,::down,::down].reshape(B,H1*W1 // down**2,H0,W0), best_match[:,None]),dim=1).softmax(dim=1)
            pos_embeddings = torch.einsum('bchw,cd->bdhw', P_lowres[:,:-1], grid_lr)
            pos_embeddings += P_lowres[:,-1] * grid[best_match].permute(0,3,1,2)
            #print("hej")
        else:
            P = corr_volume.reshape(B,H1*W1,H0,W0).softmax(dim=1) # B, HW, H, W
            pos_embeddings = torch.einsum('bchw,cd->bdhw', P, grid)
        return pos_embeddings
    
    def visualize_warp(self, warp, certainty, im_A = None, im_B = None, 
                       im_A_path = None, im_B_path = None, symmetric = True, save_path = None, unnormalize = False):
        device = warp.device
        H,W2,_ = warp.shape
        W = W2//2 if symmetric else W2
        if im_A is None:
            from PIL import Image
            im_A, im_B = Image.open(im_A_path).convert("RGB"), Image.open(im_B_path).convert("RGB")
        if not isinstance(im_A, torch.Tensor):
            im_A = im_A.resize((W,H))
            im_B = im_B.resize((W,H))    
            x_B = (torch.tensor(np.array(im_B)) / 255).to(device).permute(2, 0, 1)
            if symmetric:
                x_A = (torch.tensor(np.array(im_A)) / 255).to(device).permute(2, 0, 1)
        else:
            if symmetric:
                x_A = im_A
            x_B = im_B
        im_A_transfer_rgb = F.grid_sample(
        x_B[None], warp[:,:W, 2:][None], mode="bilinear", align_corners=False
        )[0]
        if symmetric:
            im_B_transfer_rgb = F.grid_sample(
            x_A[None], warp[:, W:, :2][None], mode="bilinear", align_corners=False
            )[0]
            warp_im = torch.cat((im_A_transfer_rgb,im_B_transfer_rgb),dim=2)
            white_im = torch.ones((H,2*W),device=device)
        else:
            warp_im = im_A_transfer_rgb
            white_im = torch.ones((H, W), device = device)
        vis_im = certainty * warp_im + (1 - certainty) * white_im
        if save_path is not None:
            from romatch.utils import tensor_to_pil
            tensor_to_pil(vis_im, unnormalize=unnormalize).save(save_path)
        return vis_im
     
    def corr_volume(self, feat0, feat1):
        """
            input:
                feat0 -> torch.Tensor(B, C, H, W)
                feat1 -> torch.Tensor(B, C, H, W)
            return:
                corr_volume -> torch.Tensor(B, H, W, H, W)
        """
        B, C, H0, W0 = feat0.shape
        B, C, H1, W1 = feat1.shape
        feat0 = feat0.view(B, C, H0*W0)
        feat1 = feat1.view(B, C, H1*W1)
        corr_volume = torch.einsum('bci,bcj->bji', feat0, feat1).reshape(B, H1, W1, H0 , W0)/math.sqrt(C) #16*16*16
        return corr_volume
    
    @torch.inference_mode()
    def match_from_path(self, im0_path, im1_path):
        device = self.device
        im0 = ToTensor()(Image.open(im0_path))[None].to(device)
        im1 = ToTensor()(Image.open(im1_path))[None].to(device)
        return self.match(im0, im1, batched = False)
    
    @torch.inference_mode()
    def match(self, im0, im1, *args, batched = True):
        # stupid
        if isinstance(im0, (str, Path)):
            return self.match_from_path(im0, im1)
        elif isinstance(im0, Image.Image):
            batched = False
            device = self.device
            im0 = ToTensor()(im0)[None].to(device)
            im1 = ToTensor()(im1)[None].to(device)
 
        B,C,H0,W0 = im0.shape
        B,C,H1,W1 = im1.shape
        self.train(False)
        corresps = self.forward({"im_A":im0, "im_B":im1})
        #return 1,1
        flow = F.interpolate(
            corresps[4]["flow"], 
            size = (H0, W0), 
            mode = "bilinear", align_corners = False).permute(0,2,3,1).reshape(B,H0,W0,2)
        grid = torch.stack(
            torch.meshgrid(
                torch.linspace(-1+1/W0,1-1/W0, W0), 
                torch.linspace(-1+1/H0,1-1/H0, H0), 
                indexing = "xy"), 
            dim = -1).float().to(flow.device).expand(B, H0, W0, 2)
        
        certainty = F.interpolate(corresps[4]["certainty"], size = (H0,W0), mode = "bilinear", align_corners = False)
        warp, cert = torch.cat((grid, flow), dim = -1), certainty[:,0].sigmoid()
        if batched:
            return warp, cert
        else:
            return warp[0], cert[0]

    def sample(
        self,
        matches,
        certainty,
        num=5_000,
    ):
        H,W,_ = matches.shape
        if "threshold" in self.sample_mode:
            upper_thresh = self.sample_thresh
            certainty = certainty.clone()
            certainty[certainty > upper_thresh] = 1
        matches, certainty = (
            matches.reshape(-1, 4),
            certainty.reshape(-1),
        )
        expansion_factor = 4 if "balanced" in self.sample_mode else 1
        good_samples = torch.multinomial(certainty, 
                        num_samples = min(expansion_factor*num, len(certainty)), 
                        replacement=False)
        good_matches, good_certainty = matches[good_samples], certainty[good_samples]
        if "balanced" not in self.sample_mode:
            return good_matches, good_certainty 
        use_half = True if matches.device.type == "cuda" else False
        down = 1 if matches.device.type == "cuda" else 8
        density = kde(good_matches, std=0.1, half = use_half, down = down)
        p = 1 / (density+1)
        p[density < 10] = 1e-7 # Basically should have at least 10 perfect neighbours, or around 100 ok ones
        balanced_samples = torch.multinomial(p, 
                        num_samples = min(num,len(good_certainty)), 
                        replacement=False)
        return good_matches[balanced_samples], good_certainty[balanced_samples]
        
            
    def forward(self, batch):
        """
            input:
                x -> torch.Tensor(B, C, H, W) grayscale or rgb images
            return:

        """
        im0 = batch["im_A"]
        im1 = batch["im_B"]
        corresps = {}
        im0, rh0, rw0 = self.preprocess_tensor(im0)
        im1, rh1, rw1 = self.preprocess_tensor(im1)
        B, C, H0, W0 = im0.shape
        B, C, H1, W1 = im1.shape
        to_normalized = torch.tensor((2/W1, 2/H1, 1)).to(im0.device)[None,:,None,None]
 
        if im0.shape[-2:] == im1.shape[-2:]:
            x = torch.cat([im0, im1], dim=0)
            x = self.forward_single(x)
            feats_x0_c, feats_x1_c = x[1].chunk(2)
            feats_x0_f, feats_x1_f = x[0].chunk(2)
        else:
            feats_x0_f, feats_x0_c = self.forward_single(im0)
            feats_x1_f, feats_x1_c = self.forward_single(im1)
        corr_volume = self.corr_volume(feats_x0_c, feats_x1_c)
        coarse_warp = self.pos_embed(corr_volume)
        coarse_matches = torch.cat((coarse_warp, torch.zeros_like(coarse_warp[:,-1:])), dim=1)
        feats_x1_c_warped = F.grid_sample(feats_x1_c, coarse_matches.permute(0, 2, 3, 1)[...,:2], mode = 'bilinear', align_corners = False)
        coarse_matches_delta = self.coarse_matcher(torch.cat((feats_x0_c, feats_x1_c_warped, coarse_warp), dim=1))
        coarse_matches = coarse_matches + coarse_matches_delta * to_normalized
        corresps[8] = {"flow": coarse_matches[:,:2], "certainty": coarse_matches[:,2:]}
        coarse_matches_up = F.interpolate(coarse_matches, size = feats_x0_f.shape[-2:], mode = "bilinear", align_corners = False)        
        coarse_matches_up_detach = coarse_matches_up.detach()#note the detach
        feats_x1_f_warped = F.grid_sample(feats_x1_f, coarse_matches_up_detach.permute(0, 2, 3, 1)[...,:2], mode = 'bilinear', align_corners = False)
        fine_matches_delta = self.fine_matcher(torch.cat((feats_x0_f, feats_x1_f_warped, coarse_matches_up_detach[:,:2]), dim=1))
        fine_matches = coarse_matches_up_detach+fine_matches_delta * to_normalized
        corresps[4] = {"flow": fine_matches[:,:2], "certainty": fine_matches[:,2:]}
        return corresps