File size: 12,036 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import math
from typing import Tuple

import numpy as np
import torch

from .utils import from_homogeneous, to_homogeneous


def flat2mat(H):
    return np.reshape(np.concatenate([H, np.ones_like(H[:, :1])], axis=1), [3, 3])


# Homography creation


def create_center_patch(shape, patch_shape=None):
    if patch_shape is None:
        patch_shape = shape
    width, height = shape
    pwidth, pheight = patch_shape
    left = int((width - pwidth) / 2)
    bottom = int((height - pheight) / 2)
    right = int((width + pwidth) / 2)
    top = int((height + pheight) / 2)
    return np.array([[left, bottom], [left, top], [right, top], [right, bottom]])


def check_convex(patch, min_convexity=0.05):
    """Checks if given polygon vertices [N,2] form a convex shape"""
    for i in range(patch.shape[0]):
        x1, y1 = patch[(i - 1) % patch.shape[0]]
        x2, y2 = patch[i]
        x3, y3 = patch[(i + 1) % patch.shape[0]]
        if (x2 - x1) * (y3 - y2) - (x3 - x2) * (y2 - y1) > -min_convexity:
            return False
    return True


def sample_homography_corners(
    shape,
    patch_shape,
    difficulty=1.0,
    translation=0.4,
    n_angles=10,
    max_angle=90,
    min_convexity=0.05,
    rng=np.random,
):
    max_angle = max_angle / 180.0 * math.pi
    width, height = shape
    pwidth, pheight = width * (1 - difficulty), height * (1 - difficulty)
    min_pts1 = create_center_patch(shape, (pwidth, pheight))
    full = create_center_patch(shape)
    pts2 = create_center_patch(patch_shape)
    scale = min_pts1 - full
    found_valid = False
    cnt = -1
    while not found_valid:
        offsets = rng.uniform(0.0, 1.0, size=(4, 2)) * scale
        pts1 = full + offsets
        found_valid = check_convex(pts1 / np.array(shape), min_convexity)
        cnt += 1

    # re-center
    pts1 = pts1 - np.mean(pts1, axis=0, keepdims=True)
    pts1 = pts1 + np.mean(min_pts1, axis=0, keepdims=True)

    # Rotation
    if n_angles > 0 and difficulty > 0:
        angles = np.linspace(-max_angle * difficulty, max_angle * difficulty, n_angles)
        rng.shuffle(angles)
        rng.shuffle(angles)
        angles = np.concatenate([[0.0], angles], axis=0)

        center = np.mean(pts1, axis=0, keepdims=True)
        rot_mat = np.reshape(
            np.stack(
                [np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)],
                axis=1,
            ),
            [-1, 2, 2],
        )
        rotated = (
            np.matmul(
                np.tile(np.expand_dims(pts1 - center, axis=0), [n_angles + 1, 1, 1]),
                rot_mat,
            )
            + center
        )

        for idx in range(1, n_angles):
            warped_points = rotated[idx] / np.array(shape)
            if np.all((warped_points >= 0.0) & (warped_points < 1.0)):
                pts1 = rotated[idx]
                break

    # Translation
    if translation > 0:
        min_trans = -np.min(pts1, axis=0)
        max_trans = shape - np.max(pts1, axis=0)
        trans = rng.uniform(min_trans, max_trans)[None]
        pts1 += trans * translation * difficulty

    H = compute_homography(pts1, pts2, [1.0, 1.0])
    warped = warp_points(full, H, inverse=False)
    return H, full, warped, patch_shape


def compute_homography(pts1_, pts2_, shape):
    """Compute the homography matrix from 4 point correspondences"""
    # Rescale to actual size
    shape = np.array(shape[::-1], dtype=np.float32)  # different convention [y, x]
    pts1 = pts1_ * np.expand_dims(shape, axis=0)
    pts2 = pts2_ * np.expand_dims(shape, axis=0)

    def ax(p, q):
        return [p[0], p[1], 1, 0, 0, 0, -p[0] * q[0], -p[1] * q[0]]

    def ay(p, q):
        return [0, 0, 0, p[0], p[1], 1, -p[0] * q[1], -p[1] * q[1]]

    a_mat = np.stack([f(pts1[i], pts2[i]) for i in range(4) for f in (ax, ay)], axis=0)
    p_mat = np.transpose(
        np.stack([[pts2[i][j] for i in range(4) for j in range(2)]], axis=0)
    )
    homography = np.transpose(np.linalg.solve(a_mat, p_mat))
    return flat2mat(homography)


# Point warping utils


def warp_points(points, homography, inverse=True):
    """
    Warp a list of points with the INVERSE of the given homography.
    The inverse is used to be coherent with tf.contrib.image.transform
    Arguments:
        points: list of N points, shape (N, 2).
        homography: batched or not (shapes (B, 3, 3) and (3, 3) respectively).
    Returns: a Tensor of shape (N, 2) or (B, N, 2) (depending on whether the homography
            is batched) containing the new coordinates of the warped points.
    """
    H = homography[None] if len(homography.shape) == 2 else homography

    # Get the points to the homogeneous format
    num_points = points.shape[0]
    # points = points.astype(np.float32)[:, ::-1]
    points = np.concatenate([points, np.ones([num_points, 1], dtype=np.float32)], -1)

    H_inv = np.transpose(np.linalg.inv(H) if inverse else H)
    warped_points = np.tensordot(points, H_inv, axes=[[1], [0]])

    warped_points = np.transpose(warped_points, [2, 0, 1])
    warped_points[np.abs(warped_points[:, :, 2]) < 1e-8, 2] = 1e-8
    warped_points = warped_points[:, :, :2] / warped_points[:, :, 2:]

    return warped_points[0] if len(homography.shape) == 2 else warped_points


def warp_points_torch(points, H, inverse=True):
    """
    Warp a list of points with the INVERSE of the given homography.
    The inverse is used to be coherent with tf.contrib.image.transform
    Arguments:
        points: batched list of N points, shape (B, N, 2).
        H: batched or not (shapes (B, 3, 3) and (3, 3) respectively).
        inverse: Whether to multiply the points by H or the inverse of H
    Returns: a Tensor of shape (B, N, 2) containing the new coordinates of the warps.
    """

    # Get the points to the homogeneous format
    points = to_homogeneous(points)

    # Apply the homography
    H_mat = (torch.inverse(H) if inverse else H).transpose(-2, -1)
    warped_points = torch.einsum("...nj,...ji->...ni", points, H_mat)

    warped_points = from_homogeneous(warped_points, eps=1e-5)
    return warped_points


# Line warping utils


def seg_equation(segs):
    # calculate list of start, end and midpoints points from both lists
    start_points, end_points = to_homogeneous(segs[..., 0, :]), to_homogeneous(
        segs[..., 1, :]
    )
    # Compute the line equations as ax + by + c = 0 , where x^2 + y^2 = 1
    lines = torch.cross(start_points, end_points, dim=-1)
    lines_norm = torch.sqrt(lines[..., 0] ** 2 + lines[..., 1] ** 2)[..., None]
    assert torch.all(
        lines_norm > 0
    ), "Error: trying to compute the equation of a line with a single point"
    lines = lines / lines_norm
    return lines


def is_inside_img(pts: torch.Tensor, img_shape: Tuple[int, int]):
    h, w = img_shape
    return (
        (pts >= 0).all(dim=-1)
        & (pts[..., 0] < w)
        & (pts[..., 1] < h)
        & (~torch.isinf(pts).any(dim=-1))
    )


def shrink_segs_to_img(segs: torch.Tensor, img_shape: Tuple[int, int]) -> torch.Tensor:
    """
    Shrink an array of segments to fit inside the image.
    :param segs: The tensor of segments with shape (N, 2, 2)
    :param img_shape: The image shape in format (H, W)
    """
    EPS = 1e-4
    device = segs.device
    w, h = img_shape[1], img_shape[0]
    # Project the segments to the reference image
    segs = segs.clone()
    eqs = seg_equation(segs)
    x0, y0 = torch.tensor([1.0, 0, 0.0], device=device), torch.tensor(
        [0.0, 1, 0], device=device
    )
    x0 = x0.repeat(eqs.shape[:-1] + (1,))
    y0 = y0.repeat(eqs.shape[:-1] + (1,))
    pt_x0s = torch.cross(eqs, x0, dim=-1)
    pt_x0s = pt_x0s[..., :-1] / pt_x0s[..., None, -1]
    pt_x0s_valid = is_inside_img(pt_x0s, img_shape)
    pt_y0s = torch.cross(eqs, y0, dim=-1)
    pt_y0s = pt_y0s[..., :-1] / pt_y0s[..., None, -1]
    pt_y0s_valid = is_inside_img(pt_y0s, img_shape)

    xW = torch.tensor([1.0, 0, EPS - w], device=device)
    yH = torch.tensor([0.0, 1, EPS - h], device=device)
    xW = xW.repeat(eqs.shape[:-1] + (1,))
    yH = yH.repeat(eqs.shape[:-1] + (1,))
    pt_xWs = torch.cross(eqs, xW, dim=-1)
    pt_xWs = pt_xWs[..., :-1] / pt_xWs[..., None, -1]
    pt_xWs_valid = is_inside_img(pt_xWs, img_shape)
    pt_yHs = torch.cross(eqs, yH, dim=-1)
    pt_yHs = pt_yHs[..., :-1] / pt_yHs[..., None, -1]
    pt_yHs_valid = is_inside_img(pt_yHs, img_shape)

    # If the X coordinate of the first endpoint is out
    mask = (segs[..., 0, 0] < 0) & pt_x0s_valid
    segs[mask, 0, :] = pt_x0s[mask]
    mask = (segs[..., 0, 0] > (w - 1)) & pt_xWs_valid
    segs[mask, 0, :] = pt_xWs[mask]
    # If the X coordinate of the second endpoint is out
    mask = (segs[..., 1, 0] < 0) & pt_x0s_valid
    segs[mask, 1, :] = pt_x0s[mask]
    mask = (segs[:, 1, 0] > (w - 1)) & pt_xWs_valid
    segs[mask, 1, :] = pt_xWs[mask]
    # If the Y coordinate of the first endpoint is out
    mask = (segs[..., 0, 1] < 0) & pt_y0s_valid
    segs[mask, 0, :] = pt_y0s[mask]
    mask = (segs[..., 0, 1] > (h - 1)) & pt_yHs_valid
    segs[mask, 0, :] = pt_yHs[mask]
    # If the Y coordinate of the second endpoint is out
    mask = (segs[..., 1, 1] < 0) & pt_y0s_valid
    segs[mask, 1, :] = pt_y0s[mask]
    mask = (segs[..., 1, 1] > (h - 1)) & pt_yHs_valid
    segs[mask, 1, :] = pt_yHs[mask]

    assert (
        torch.all(segs >= 0)
        and torch.all(segs[..., 0] < w)
        and torch.all(segs[..., 1] < h)
    )
    return segs


def warp_lines_torch(
    lines, H, inverse=True, dst_shape: Tuple[int, int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    :param lines: A tensor of shape (B, N, 2, 2)
              where B is the batch size, N the number of lines.
    :param H: The homography used to convert the lines.
              batched or not (shapes (B, 3, 3) and (3, 3) respectively).
    :param inverse: Whether to apply H or the inverse of H
    :param dst_shape:If provided, lines are trimmed to be inside the image
    """
    device = lines.device
    batch_size = len(lines)
    lines = warp_points_torch(lines.reshape(batch_size, -1, 2), H, inverse).reshape(
        lines.shape
    )

    if dst_shape is None:
        return lines, torch.ones(lines.shape[:-2], dtype=torch.bool, device=device)

    out_img = torch.any(
        (lines < 0) | (lines >= torch.tensor(dst_shape[::-1], device=device)), -1
    )
    valid = ~out_img.all(-1)
    any_out_of_img = out_img.any(-1)
    lines_to_trim = valid & any_out_of_img

    for b in range(batch_size):
        lines_to_trim_mask_b = lines_to_trim[b]
        lines_to_trim_b = lines[b][lines_to_trim_mask_b]
        corrected_lines = shrink_segs_to_img(lines_to_trim_b, dst_shape)
        lines[b][lines_to_trim_mask_b] = corrected_lines

    return lines, valid


# Homography evaluation utils


def sym_homography_error(kpts0, kpts1, T_0to1):
    kpts0_1 = from_homogeneous(to_homogeneous(kpts0) @ T_0to1.transpose(-1, -2))
    dist0_1 = ((kpts0_1 - kpts1) ** 2).sum(-1).sqrt()

    kpts1_0 = from_homogeneous(
        to_homogeneous(kpts1) @ torch.pinverse(T_0to1.transpose(-1, -2))
    )
    dist1_0 = ((kpts1_0 - kpts0) ** 2).sum(-1).sqrt()

    return (dist0_1 + dist1_0) / 2.0


def sym_homography_error_all(kpts0, kpts1, H):
    kp0_1 = warp_points_torch(kpts0, H, inverse=False)
    kp1_0 = warp_points_torch(kpts1, H, inverse=True)

    # build a distance matrix of size [... x M x N]
    dist0 = torch.sum((kp0_1.unsqueeze(-2) - kpts1.unsqueeze(-3)) ** 2, -1).sqrt()
    dist1 = torch.sum((kpts0.unsqueeze(-2) - kp1_0.unsqueeze(-3)) ** 2, -1).sqrt()
    return (dist0 + dist1) / 2.0


def homography_corner_error(T, T_gt, image_size):
    W, H = image_size[..., 0], image_size[..., 1]
    corners0 = torch.Tensor([[0, 0], [W, 0], [W, H], [0, H]]).float().to(T)
    corners1_gt = from_homogeneous(to_homogeneous(corners0) @ T_gt.transpose(-1, -2))
    corners1 = from_homogeneous(to_homogeneous(corners0) @ T.transpose(-1, -2))
    d = torch.sqrt(((corners1 - corners1_gt) ** 2).sum(-1))
    return d.mean(-1)