File size: 9,750 Bytes
437b5f6
 
 
 
 
 
 
 
 
 
10624da
437b5f6
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
 
 
4c12b36
437b5f6
 
 
 
 
4c12b36
437b5f6
4c12b36
437b5f6
 
4c12b36
 
 
 
 
 
437b5f6
 
4c12b36
 
 
 
 
 
437b5f6
 
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
4c12b36
 
437b5f6
 
4c12b36
437b5f6
4c12b36
437b5f6
 
4c12b36
437b5f6
4c12b36
 
 
 
 
 
 
437b5f6
 
4c12b36
 
 
 
 
437b5f6
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
437b5f6
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
4c12b36
 
 
 
437b5f6
 
4c12b36
437b5f6
 
 
 
 
 
 
4c12b36
437b5f6
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
4c12b36
 
437b5f6
 
4c12b36
437b5f6
4c12b36
437b5f6
 
4c12b36
437b5f6
4c12b36
 
 
 
 
 
 
437b5f6
 
 
4c12b36
 
 
437b5f6
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
437b5f6
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
 
437b5f6
 
 
 
4c12b36
437b5f6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Copyright 2020 Toyota Research Institute.  All rights reserved.
# Adapted from: https://github.com/rpautrat/SuperPoint/blob/master/superpoint/evaluations/descriptor_evaluation.py

import random
from glob import glob
from os import path as osp

import cv2
import numpy as np

from ..lanet_utils import warp_keypoints


def select_k_best(points, descriptors, k):
    """Select the k most probable points (and strip their probability).
    points has shape (num_points, 3) where the last coordinate is the probability.

    Parameters
    ----------
    points: numpy.ndarray (N,3)
        Keypoint vector, consisting of (x,y,probability).
    descriptors: numpy.ndarray (N,256)
        Keypoint descriptors.
    k: int
        Number of keypoints to select, based on probability.
    Returns
    -------

    selected_points: numpy.ndarray (k,2)
        k most probable keypoints.
    selected_descriptors: numpy.ndarray (k,256)
        Descriptors corresponding to the k most probable keypoints.
    """
    sorted_prob = points[points[:, 2].argsort(), :2]
    sorted_desc = descriptors[points[:, 2].argsort(), :]
    start = min(k, points.shape[0])
    selected_points = sorted_prob[-start:, :]
    selected_descriptors = sorted_desc[-start:, :]
    return selected_points, selected_descriptors


def keep_shared_points(keypoints, descriptors, H, shape, keep_k_points=1000):
    """
    Compute a list of keypoints from the map, filter the list of points by keeping
    only the points that once mapped by H are still inside the shape of the map
    and keep at most 'keep_k_points' keypoints in the image.

    Parameters
    ----------
    keypoints: numpy.ndarray (N,3)
        Keypoint vector, consisting of (x,y,probability).
    descriptors: numpy.ndarray (N,256)
        Keypoint descriptors.
    H: numpy.ndarray (3,3)
        Homography.
    shape: tuple
        Image shape.
    keep_k_points: int
        Number of keypoints to select, based on probability.

    Returns
    -------
    selected_points: numpy.ndarray (k,2)
        k most probable keypoints.
    selected_descriptors: numpy.ndarray (k,256)
        Descriptors corresponding to the k most probable keypoints.
    """

    def keep_true_keypoints(points, descriptors, H, shape):
        """Keep only the points whose warped coordinates by H are still inside shape."""
        warped_points = warp_keypoints(points[:, [1, 0]], H)
        warped_points[:, [0, 1]] = warped_points[:, [1, 0]]
        mask = (
            (warped_points[:, 0] >= 0)
            & (warped_points[:, 0] < shape[0])
            & (warped_points[:, 1] >= 0)
            & (warped_points[:, 1] < shape[1])
        )
        return points[mask, :], descriptors[mask, :]

    selected_keypoints, selected_descriptors = keep_true_keypoints(
        keypoints, descriptors, H, shape
    )
    selected_keypoints, selected_descriptors = select_k_best(
        selected_keypoints, selected_descriptors, keep_k_points
    )
    return selected_keypoints, selected_descriptors


def compute_matching_score(data, keep_k_points=1000):
    """
    Compute the matching score between two sets of keypoints with associated descriptors.

    Parameters
    ----------
    data: dict
        Input dictionary containing:
        image_shape: tuple (H,W)
            Original image shape.
        homography: numpy.ndarray (3,3)
            Ground truth homography.
        prob: numpy.ndarray (N,3)
            Keypoint vector, consisting of (x,y,probability).
        warped_prob: numpy.ndarray (N,3)
            Warped keypoint vector, consisting of (x,y,probability).
        desc: numpy.ndarray (N,256)
            Keypoint descriptors.
        warped_desc: numpy.ndarray (N,256)
            Warped keypoint descriptors.
    keep_k_points: int
        Number of keypoints to select, based on probability.

    Returns
    -------
    ms: float
        Matching score.
    """
    shape = data["image_shape"]
    real_H = data["homography"]

    # Filter out predictions
    keypoints = data["prob"][:, :2].T
    keypoints = keypoints[::-1]
    prob = data["prob"][:, 2]
    keypoints = np.stack([keypoints[0], keypoints[1], prob], axis=-1)

    warped_keypoints = data["warped_prob"][:, :2].T
    warped_keypoints = warped_keypoints[::-1]
    warped_prob = data["warped_prob"][:, 2]
    warped_keypoints = np.stack(
        [warped_keypoints[0], warped_keypoints[1], warped_prob], axis=-1
    )

    desc = data["desc"]
    warped_desc = data["warped_desc"]

    # Keeps all points for the next frame. The matching for caculating M.Score shouldnt use only in view points.
    keypoints, desc = select_k_best(keypoints, desc, keep_k_points)
    warped_keypoints, warped_desc = select_k_best(
        warped_keypoints, warped_desc, keep_k_points
    )

    # Match the keypoints with the warped_keypoints with nearest neighbor search
    # This part needs to be done with crossCheck=False.
    # All the matched pairs need to be evaluated without any selection.
    bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=False)

    matches = bf.match(desc, warped_desc)
    matches_idx = np.array([m.queryIdx for m in matches])
    m_keypoints = keypoints[matches_idx, :]
    matches_idx = np.array([m.trainIdx for m in matches])
    m_warped_keypoints = warped_keypoints[matches_idx, :]

    true_warped_keypoints = warp_keypoints(
        m_warped_keypoints[:, [1, 0]], np.linalg.inv(real_H)
    )[:, ::-1]
    vis_warped = np.all(
        (true_warped_keypoints >= 0) & (true_warped_keypoints <= (np.array(shape) - 1)),
        axis=-1,
    )
    norm1 = np.linalg.norm(true_warped_keypoints - m_keypoints, axis=-1)

    correct1 = norm1 < 3
    count1 = np.sum(correct1 * vis_warped)
    score1 = count1 / np.maximum(np.sum(vis_warped), 1.0)

    matches = bf.match(warped_desc, desc)
    matches_idx = np.array([m.queryIdx for m in matches])
    m_warped_keypoints = warped_keypoints[matches_idx, :]
    matches_idx = np.array([m.trainIdx for m in matches])
    m_keypoints = keypoints[matches_idx, :]

    true_keypoints = warp_keypoints(m_keypoints[:, [1, 0]], real_H)[:, ::-1]
    vis = np.all(
        (true_keypoints >= 0) & (true_keypoints <= (np.array(shape) - 1)), axis=-1
    )
    norm2 = np.linalg.norm(true_keypoints - m_warped_keypoints, axis=-1)

    correct2 = norm2 < 3
    count2 = np.sum(correct2 * vis)
    score2 = count2 / np.maximum(np.sum(vis), 1.0)

    ms = (score1 + score2) / 2

    return ms


def compute_homography(data, keep_k_points=1000):
    """
    Compute the homography between 2 sets of Keypoints and descriptors inside data.
    Use the homography to compute the correctness metrics (1,3,5).

    Parameters
    ----------
    data: dict
        Input dictionary containing:
        image_shape: tuple (H,W)
            Original image shape.
        homography: numpy.ndarray (3,3)
            Ground truth homography.
        prob: numpy.ndarray (N,3)
            Keypoint vector, consisting of (x,y,probability).
        warped_prob: numpy.ndarray (N,3)
            Warped keypoint vector, consisting of (x,y,probability).
        desc: numpy.ndarray (N,256)
            Keypoint descriptors.
        warped_desc: numpy.ndarray (N,256)
            Warped keypoint descriptors.
    keep_k_points: int
        Number of keypoints to select, based on probability.

    Returns
    -------
    correctness1: float
        correctness1 metric.
    correctness3: float
        correctness3 metric.
    correctness5: float
        correctness5 metric.
    """
    shape = data["image_shape"]
    real_H = data["homography"]

    # Filter out predictions
    keypoints = data["prob"][:, :2].T
    keypoints = keypoints[::-1]
    prob = data["prob"][:, 2]
    keypoints = np.stack([keypoints[0], keypoints[1], prob], axis=-1)

    warped_keypoints = data["warped_prob"][:, :2].T
    warped_keypoints = warped_keypoints[::-1]
    warped_prob = data["warped_prob"][:, 2]
    warped_keypoints = np.stack(
        [warped_keypoints[0], warped_keypoints[1], warped_prob], axis=-1
    )

    desc = data["desc"]
    warped_desc = data["warped_desc"]

    # Keeps only the points shared between the two views
    keypoints, desc = keep_shared_points(keypoints, desc, real_H, shape, keep_k_points)
    warped_keypoints, warped_desc = keep_shared_points(
        warped_keypoints, warped_desc, np.linalg.inv(real_H), shape, keep_k_points
    )

    bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
    matches = bf.match(desc, warped_desc)
    matches_idx = np.array([m.queryIdx for m in matches])
    m_keypoints = keypoints[matches_idx, :]
    matches_idx = np.array([m.trainIdx for m in matches])
    m_warped_keypoints = warped_keypoints[matches_idx, :]

    # Estimate the homography between the matches using RANSAC
    H, _ = cv2.findHomography(
        m_keypoints[:, [1, 0]],
        m_warped_keypoints[:, [1, 0]],
        cv2.RANSAC,
        3,
        maxIters=5000,
    )

    if H is None:
        return 0, 0, 0

    shape = shape[::-1]

    # Compute correctness
    corners = np.array(
        [
            [0, 0, 1],
            [0, shape[1] - 1, 1],
            [shape[0] - 1, 0, 1],
            [shape[0] - 1, shape[1] - 1, 1],
        ]
    )
    real_warped_corners = np.dot(corners, np.transpose(real_H))
    real_warped_corners = real_warped_corners[:, :2] / real_warped_corners[:, 2:]
    warped_corners = np.dot(corners, np.transpose(H))
    warped_corners = warped_corners[:, :2] / warped_corners[:, 2:]

    mean_dist = np.mean(np.linalg.norm(real_warped_corners - warped_corners, axis=1))
    correctness1 = float(mean_dist <= 1)
    correctness3 = float(mean_dist <= 3)
    correctness5 = float(mean_dist <= 5)

    return correctness1, correctness3, correctness5