File size: 15,658 Bytes
7a991bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Script to pre-process the scannet++ dataset.
# Usage:
# python3 datasets_preprocess/preprocess_scannetpp.py --scannetpp_dir /path/to/scannetpp --precomputed_pairs /path/to/scannetpp_pairs --pyopengl-platform egl
# --------------------------------------------------------
import os
import argparse
import os.path as osp
import re
from tqdm import tqdm
import json
from scipy.spatial.transform import Rotation
import pyrender
import trimesh
import trimesh.exchange.ply
import numpy as np
import cv2
import PIL.Image as Image

from dust3r.datasets.utils.cropping import rescale_image_depthmap
import dust3r.utils.geometry as geometry

inv = np.linalg.inv
norm = np.linalg.norm
REGEXPR_DSLR = re.compile(r'^DSC(?P<frameid>\d+).JPG$')
REGEXPR_IPHONE = re.compile(r'frame_(?P<frameid>\d+).jpg$')

DEBUG_VIZ = None  # 'iou'
if DEBUG_VIZ is not None:
    import matplotlib.pyplot as plt  # noqa


OPENGL_TO_OPENCV = np.float32([[1, 0, 0, 0],
                               [0, -1, 0, 0],
                               [0, 0, -1, 0],
                               [0, 0, 0, 1]])


def get_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument('--scannetpp_dir', required=True)
    parser.add_argument('--precomputed_pairs', required=True)
    parser.add_argument('--output_dir', default='data/scannetpp_processed')
    parser.add_argument('--target_resolution', default=920, type=int, help="images resolution")
    parser.add_argument('--pyopengl-platform', type=str, default='', help='PyOpenGL env variable')
    return parser


def pose_from_qwxyz_txyz(elems):
    qw, qx, qy, qz, tx, ty, tz = map(float, elems)
    pose = np.eye(4)
    pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix()
    pose[:3, 3] = (tx, ty, tz)
    return np.linalg.inv(pose)  # returns cam2world


def get_frame_number(name, cam_type='dslr'):
    if cam_type == 'dslr':
        regex_expr = REGEXPR_DSLR
    elif cam_type == 'iphone':
        regex_expr = REGEXPR_IPHONE
    else:
        raise NotImplementedError(f'wrong {cam_type=} for get_frame_number')
    matches = re.match(regex_expr, name)
    return matches['frameid']


def load_sfm(sfm_dir, cam_type='dslr'):
    # load cameras
    with open(osp.join(sfm_dir, 'cameras.txt'), 'r') as f:
        raw = f.read().splitlines()[3:]  # skip header

    intrinsics = {}
    for camera in tqdm(raw, position=1, leave=False):
        camera = camera.split(' ')
        intrinsics[int(camera[0])] = [camera[1]] + [float(cam) for cam in camera[2:]]

    # load images
    with open(os.path.join(sfm_dir, 'images.txt'), 'r') as f:
        raw = f.read().splitlines()
        raw = [line for line in raw if not line.startswith('#')]  # skip header

    img_idx = {}
    img_infos = {}
    for image, points in tqdm(zip(raw[0::2], raw[1::2]), total=len(raw) // 2, position=1, leave=False):
        image = image.split(' ')
        points = points.split(' ')

        idx = image[0]
        img_name = image[-1]
        assert img_name not in img_idx, 'duplicate db image: ' + img_name
        img_idx[img_name] = idx  # register image name

        current_points2D = {int(i): (float(x), float(y))
                            for i, x, y in zip(points[2::3], points[0::3], points[1::3]) if i != '-1'}
        img_infos[idx] = dict(intrinsics=intrinsics[int(image[-2])],
                              path=img_name,
                              frame_id=get_frame_number(img_name, cam_type),
                              cam_to_world=pose_from_qwxyz_txyz(image[1: -2]),
                              sparse_pts2d=current_points2D)

    # load 3D points
    with open(os.path.join(sfm_dir, 'points3D.txt'), 'r') as f:
        raw = f.read().splitlines()
        raw = [line for line in raw if not line.startswith('#')]  # skip header

    points3D = {}
    observations = {idx: [] for idx in img_infos.keys()}
    for point in tqdm(raw, position=1, leave=False):
        point = point.split()
        point_3d_idx = int(point[0])
        points3D[point_3d_idx] = tuple(map(float, point[1:4]))
        if len(point) > 8:
            for idx, point_2d_idx in zip(point[8::2], point[9::2]):
                observations[idx].append((point_3d_idx, int(point_2d_idx)))

    return img_idx, img_infos, points3D, observations


def subsample_img_infos(img_infos, num_images, allowed_name_subset=None):
    img_infos_val = [(idx, val) for idx, val in img_infos.items()]
    if allowed_name_subset is not None:
        img_infos_val = [(idx, val) for idx, val in img_infos_val if val['path'] in allowed_name_subset]

    if len(img_infos_val) > num_images:
        img_infos_val = sorted(img_infos_val, key=lambda x: x[1]['frame_id'])
        kept_idx = np.round(np.linspace(0, len(img_infos_val) - 1, num_images)).astype(int).tolist()
        img_infos_val = [img_infos_val[idx] for idx in kept_idx]
    return {idx: val for idx, val in img_infos_val}


def undistort_images(intrinsics, rgb, mask):
    camera_type = intrinsics[0]

    width = int(intrinsics[1])
    height = int(intrinsics[2])
    fx = intrinsics[3]
    fy = intrinsics[4]
    cx = intrinsics[5]
    cy = intrinsics[6]
    distortion = np.array(intrinsics[7:])

    K = np.zeros([3, 3])
    K[0, 0] = fx
    K[0, 2] = cx
    K[1, 1] = fy
    K[1, 2] = cy
    K[2, 2] = 1

    K = geometry.colmap_to_opencv_intrinsics(K)
    if camera_type == "OPENCV_FISHEYE":
        assert len(distortion) == 4

        new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(
            K,
            distortion,
            (width, height),
            np.eye(3),
            balance=0.0,
        )
        # Make the cx and cy to be the center of the image
        new_K[0, 2] = width / 2.0
        new_K[1, 2] = height / 2.0

        map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1)
    else:
        new_K, _ = cv2.getOptimalNewCameraMatrix(K, distortion, (width, height), 1, (width, height), True)
        map1, map2 = cv2.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1)

    undistorted_image = cv2.remap(rgb, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
    undistorted_mask = cv2.remap(mask, map1, map2, interpolation=cv2.INTER_LINEAR,
                                 borderMode=cv2.BORDER_CONSTANT, borderValue=255)
    K = geometry.opencv_to_colmap_intrinsics(K)
    return width, height, new_K, undistorted_image, undistorted_mask


def process_scenes(root, pairsdir, output_dir, target_resolution):
    os.makedirs(output_dir, exist_ok=True)

    # default values from
    # https://github.com/scannetpp/scannetpp/blob/main/common/configs/render.yml
    znear = 0.05
    zfar = 20.0

    listfile = osp.join(pairsdir, 'scene_list.json')
    with open(listfile, 'r') as f:
        scenes = json.load(f)

    # for each of these, we will select some dslr images and some iphone images
    # we will undistort them and render their depth
    renderer = pyrender.OffscreenRenderer(0, 0)
    for scene in tqdm(scenes, position=0, leave=True):
        data_dir = os.path.join(root, 'data', scene)
        dir_dslr = os.path.join(data_dir, 'dslr')
        dir_iphone = os.path.join(data_dir, 'iphone')
        dir_scans = os.path.join(data_dir, 'scans')

        assert os.path.isdir(data_dir) and os.path.isdir(dir_dslr) \
            and os.path.isdir(dir_iphone) and os.path.isdir(dir_scans)

        output_dir_scene = os.path.join(output_dir, scene)
        scene_metadata_path = osp.join(output_dir_scene, 'scene_metadata.npz')
        if osp.isfile(scene_metadata_path):
            continue

        pairs_dir_scene = os.path.join(pairsdir, scene)
        pairs_dir_scene_selected_pairs = os.path.join(pairs_dir_scene, 'selected_pairs.npz')
        assert osp.isfile(pairs_dir_scene_selected_pairs)
        selected_npz = np.load(pairs_dir_scene_selected_pairs)
        selection, pairs = selected_npz['selection'], selected_npz['pairs']

        # set up the output paths
        output_dir_scene_rgb = os.path.join(output_dir_scene, 'images')
        output_dir_scene_depth = os.path.join(output_dir_scene, 'depth')
        os.makedirs(output_dir_scene_rgb, exist_ok=True)
        os.makedirs(output_dir_scene_depth, exist_ok=True)

        ply_path = os.path.join(dir_scans, 'mesh_aligned_0.05.ply')

        sfm_dir_dslr = os.path.join(dir_dslr, 'colmap')
        rgb_dir_dslr = os.path.join(dir_dslr, 'resized_images')
        mask_dir_dslr = os.path.join(dir_dslr, 'resized_anon_masks')

        sfm_dir_iphone = os.path.join(dir_iphone, 'colmap')
        rgb_dir_iphone = os.path.join(dir_iphone, 'rgb')
        mask_dir_iphone = os.path.join(dir_iphone, 'rgb_masks')

        # load the mesh
        with open(ply_path, 'rb') as f:
            mesh_kwargs = trimesh.exchange.ply.load_ply(f)
        mesh_scene = trimesh.Trimesh(**mesh_kwargs)

        # read colmap reconstruction, we will only use the intrinsics and pose here
        img_idx_dslr, img_infos_dslr, points3D_dslr, observations_dslr = load_sfm(sfm_dir_dslr, cam_type='dslr')
        dslr_paths = {
            "in_colmap": sfm_dir_dslr,
            "in_rgb": rgb_dir_dslr,
            "in_mask": mask_dir_dslr,
        }

        img_idx_iphone, img_infos_iphone, points3D_iphone, observations_iphone = load_sfm(
            sfm_dir_iphone, cam_type='iphone')
        iphone_paths = {
            "in_colmap": sfm_dir_iphone,
            "in_rgb": rgb_dir_iphone,
            "in_mask": mask_dir_iphone,
        }

        mesh = pyrender.Mesh.from_trimesh(mesh_scene, smooth=False)
        pyrender_scene = pyrender.Scene()
        pyrender_scene.add(mesh)

        selection_dslr = [imgname + '.JPG' for imgname in selection if imgname.startswith('DSC')]
        selection_iphone = [imgname + '.jpg' for imgname in selection if imgname.startswith('frame_')]

        # resize the image to a more manageable size and render depth
        for selection_cam, img_idx, img_infos, paths_data in [(selection_dslr, img_idx_dslr, img_infos_dslr, dslr_paths),
                                                              (selection_iphone, img_idx_iphone, img_infos_iphone, iphone_paths)]:
            rgb_dir = paths_data['in_rgb']
            mask_dir = paths_data['in_mask']
            for imgname in tqdm(selection_cam, position=1, leave=False):
                imgidx = img_idx[imgname]
                img_infos_idx = img_infos[imgidx]
                rgb = np.array(Image.open(os.path.join(rgb_dir, img_infos_idx['path'])))
                mask = np.array(Image.open(os.path.join(mask_dir, img_infos_idx['path'][:-3] + 'png')))

                _, _, K, rgb, mask = undistort_images(img_infos_idx['intrinsics'], rgb, mask)

                # rescale_image_depthmap assumes opencv intrinsics
                intrinsics = geometry.colmap_to_opencv_intrinsics(K)
                image, mask, intrinsics = rescale_image_depthmap(
                    rgb, mask, intrinsics, (target_resolution, target_resolution * 3.0 / 4))

                W, H = image.size
                intrinsics = geometry.opencv_to_colmap_intrinsics(intrinsics)

                # update inpace img_infos_idx
                img_infos_idx['intrinsics'] = intrinsics
                rgb_outpath = os.path.join(output_dir_scene_rgb, img_infos_idx['path'][:-3] + 'jpg')
                image.save(rgb_outpath)

                depth_outpath = os.path.join(output_dir_scene_depth, img_infos_idx['path'][:-3] + 'png')
                # render depth image
                renderer.viewport_width, renderer.viewport_height = W, H
                fx, fy, cx, cy = intrinsics[0, 0], intrinsics[1, 1], intrinsics[0, 2], intrinsics[1, 2]
                camera = pyrender.camera.IntrinsicsCamera(fx, fy, cx, cy, znear=znear, zfar=zfar)
                camera_node = pyrender_scene.add(camera, pose=img_infos_idx['cam_to_world'] @ OPENGL_TO_OPENCV)

                depth = renderer.render(pyrender_scene, flags=pyrender.RenderFlags.DEPTH_ONLY)
                pyrender_scene.remove_node(camera_node)  # dont forget to remove camera

                depth = (depth * 1000).astype('uint16')
                # invalidate depth from mask before saving
                depth_mask = (mask < 255)
                depth[depth_mask] = 0
                Image.fromarray(depth).save(depth_outpath)

        trajectories = []
        intrinsics = []
        for imgname in selection:
            if imgname.startswith('DSC'):
                imgidx = img_idx_dslr[imgname + '.JPG']
                img_infos_idx = img_infos_dslr[imgidx]
            elif imgname.startswith('frame_'):
                imgidx = img_idx_iphone[imgname + '.jpg']
                img_infos_idx = img_infos_iphone[imgidx]
            else:
                raise ValueError('invalid image name')

            intrinsics.append(img_infos_idx['intrinsics'])
            trajectories.append(img_infos_idx['cam_to_world'])

        intrinsics = np.stack(intrinsics, axis=0)
        trajectories = np.stack(trajectories, axis=0)
        # save metadata for this scene
        np.savez(scene_metadata_path,
                 trajectories=trajectories,
                 intrinsics=intrinsics,
                 images=selection,
                 pairs=pairs)

        del img_infos
        del pyrender_scene

    # concat all scene_metadata.npz into a single file
    scene_data = {}
    for scene_subdir in scenes:
        scene_metadata_path = osp.join(output_dir, scene_subdir, 'scene_metadata.npz')
        with np.load(scene_metadata_path) as data:
            trajectories = data['trajectories']
            intrinsics = data['intrinsics']
            images = data['images']
            pairs = data['pairs']
        scene_data[scene_subdir] = {'trajectories': trajectories,
                                    'intrinsics': intrinsics,
                                    'images': images,
                                    'pairs': pairs}

    offset = 0
    counts = []
    scenes = []
    sceneids = []
    images = []
    intrinsics = []
    trajectories = []
    pairs = []
    for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()):
        num_imgs = data['images'].shape[0]
        img_pairs = data['pairs']

        scenes.append(scene_subdir)
        sceneids.extend([scene_idx] * num_imgs)

        images.append(data['images'])

        intrinsics.append(data['intrinsics'])
        trajectories.append(data['trajectories'])

        # offset pairs
        img_pairs[:, 0:2] += offset
        pairs.append(img_pairs)
        counts.append(offset)

        offset += num_imgs

    images = np.concatenate(images, axis=0)
    intrinsics = np.concatenate(intrinsics, axis=0)
    trajectories = np.concatenate(trajectories, axis=0)
    pairs = np.concatenate(pairs, axis=0)
    np.savez(osp.join(output_dir, 'all_metadata.npz'),
             counts=counts,
             scenes=scenes,
             sceneids=sceneids,
             images=images,
             intrinsics=intrinsics,
             trajectories=trajectories,
             pairs=pairs)
    print('all done')


if __name__ == '__main__':
    parser = get_parser()
    args = parser.parse_args()
    if args.pyopengl_platform.strip():
        os.environ['PYOPENGL_PLATFORM'] = args.pyopengl_platform
    process_scenes(args.scannetpp_dir, args.precomputed_pairs, args.output_dir, args.target_resolution)