File size: 9,696 Bytes
7a991bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Preprocessing code for the WayMo Open dataset
# dataset at https://github.com/waymo-research/waymo-open-dataset
# 1) Accept the license
# 2) download all training/*.tfrecord files from Perception Dataset, version 1.4.2
# 3) put all .tfrecord files in '/path/to/waymo_dir'
# 4) install the waymo_open_dataset package with
#    `python3 -m pip install gcsfs waymo-open-dataset-tf-2-12-0==1.6.4`
# 5) execute this script as `python preprocess_waymo.py --waymo_dir /path/to/waymo_dir`
# --------------------------------------------------------
import sys
import os
import os.path as osp
import shutil
import json
from tqdm import tqdm
import PIL.Image
import numpy as np
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2

import tensorflow.compat.v1 as tf
tf.enable_eager_execution()

import path_to_root  # noqa
from dust3r.utils.geometry import geotrf, inv
from dust3r.utils.image import imread_cv2
from dust3r.utils.parallel import parallel_processes as parallel_map
from dust3r.datasets.utils import cropping
from dust3r.viz import show_raw_pointcloud


def get_parser():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--waymo_dir', required=True)
    parser.add_argument('--precomputed_pairs', required=True)
    parser.add_argument('--output_dir', default='data/waymo_processed')
    parser.add_argument('--workers', type=int, default=1)
    return parser


def main(waymo_root, pairs_path, output_dir, workers=1):
    extract_frames(waymo_root, output_dir, workers=workers)
    make_crops(output_dir, workers=args.workers)

    # make sure all pairs are there
    with np.load(pairs_path) as data:
        scenes = data['scenes']
        frames = data['frames']
        pairs = data['pairs']  # (array of (scene_id, img1_id, img2_id)

    for scene_id, im1_id, im2_id in pairs:
        for im_id in (im1_id, im2_id):
            path = osp.join(output_dir, scenes[scene_id], frames[im_id] + '.jpg')
            assert osp.isfile(path), f'Missing a file at {path=}\nDid you download all .tfrecord files?'

    shutil.rmtree(osp.join(output_dir, 'tmp'))
    print('Done! all data generated at', output_dir)


def _list_sequences(db_root):
    print('>> Looking for sequences in', db_root)
    res = sorted(f for f in os.listdir(db_root) if f.endswith('.tfrecord'))
    print(f'    found {len(res)} sequences')
    return res


def extract_frames(db_root, output_dir, workers=8):
    sequences = _list_sequences(db_root)
    output_dir = osp.join(output_dir, 'tmp')
    print('>> outputing result to', output_dir)
    args = [(db_root, output_dir, seq) for seq in sequences]
    parallel_map(process_one_seq, args, star_args=True, workers=workers)


def process_one_seq(db_root, output_dir, seq):
    out_dir = osp.join(output_dir, seq)
    os.makedirs(out_dir, exist_ok=True)
    calib_path = osp.join(out_dir, 'calib.json')
    if osp.isfile(calib_path):
        return

    try:
        with tf.device('/CPU:0'):
            calib, frames = extract_frames_one_seq(osp.join(db_root, seq))
    except RuntimeError:
        print(f'/!\\ Error with sequence {seq} /!\\', file=sys.stderr)
        return  # nothing is saved

    for f, (frame_name, views) in enumerate(tqdm(frames, leave=False)):
        for cam_idx, view in views.items():
            img = PIL.Image.fromarray(view.pop('img'))
            img.save(osp.join(out_dir, f'{f:05d}_{cam_idx}.jpg'))
            np.savez(osp.join(out_dir, f'{f:05d}_{cam_idx}.npz'), **view)

    with open(calib_path, 'w') as f:
        json.dump(calib, f)


def extract_frames_one_seq(filename):
    from waymo_open_dataset import dataset_pb2 as open_dataset
    from waymo_open_dataset.utils import frame_utils

    print('>> Opening', filename)
    dataset = tf.data.TFRecordDataset(filename, compression_type='')

    calib = None
    frames = []

    for data in tqdm(dataset, leave=False):
        frame = open_dataset.Frame()
        frame.ParseFromString(bytearray(data.numpy()))

        content = frame_utils.parse_range_image_and_camera_projection(frame)
        range_images, camera_projections, _, range_image_top_pose = content

        views = {}
        frames.append((frame.context.name, views))

        # once in a sequence, read camera calibration info
        if calib is None:
            calib = []
            for cam in frame.context.camera_calibrations:
                calib.append((cam.name,
                              dict(width=cam.width,
                                   height=cam.height,
                                   intrinsics=list(cam.intrinsic),
                                   extrinsics=list(cam.extrinsic.transform))))

        # convert LIDAR to pointcloud
        points, cp_points = frame_utils.convert_range_image_to_point_cloud(
            frame,
            range_images,
            camera_projections,
            range_image_top_pose)

        # 3d points in vehicle frame.
        points_all = np.concatenate(points, axis=0)
        cp_points_all = np.concatenate(cp_points, axis=0)

        # The distance between lidar points and vehicle frame origin.
        cp_points_all_tensor = tf.constant(cp_points_all, dtype=tf.int32)

        for i, image in enumerate(frame.images):
            # select relevant 3D points for this view
            mask = tf.equal(cp_points_all_tensor[..., 0], image.name)
            cp_points_msk_tensor = tf.cast(tf.gather_nd(cp_points_all_tensor, tf.where(mask)), dtype=tf.float32)

            pose = np.asarray(image.pose.transform).reshape(4, 4)
            timestamp = image.pose_timestamp

            rgb = tf.image.decode_jpeg(image.image).numpy()

            pix = cp_points_msk_tensor[..., 1:3].numpy().round().astype(np.int16)
            pts3d = points_all[mask.numpy()]

            views[image.name] = dict(img=rgb, pose=pose, pixels=pix, pts3d=pts3d, timestamp=timestamp)

        if not 'show full point cloud':
            show_raw_pointcloud([v['pts3d'] for v in views.values()], [v['img'] for v in views.values()])

    return calib, frames


def make_crops(output_dir, workers=16, **kw):
    tmp_dir = osp.join(output_dir, 'tmp')
    sequences = _list_sequences(tmp_dir)
    args = [(tmp_dir, output_dir, seq) for seq in sequences]
    parallel_map(crop_one_seq, args, star_args=True, workers=workers, front_num=0)


def crop_one_seq(input_dir, output_dir, seq, resolution=512):
    seq_dir = osp.join(input_dir, seq)
    out_dir = osp.join(output_dir, seq)
    if osp.isfile(osp.join(out_dir, '00100_1.jpg')):
        return
    os.makedirs(out_dir, exist_ok=True)

    # load calibration file
    try:
        with open(osp.join(seq_dir, 'calib.json')) as f:
            calib = json.load(f)
    except IOError:
        print(f'/!\\ Error: Missing calib.json in sequence {seq} /!\\', file=sys.stderr)
        return

    axes_transformation = np.array([
        [0, -1, 0, 0],
        [0, 0, -1, 0],
        [1, 0, 0, 0],
        [0, 0, 0, 1]])

    cam_K = {}
    cam_distortion = {}
    cam_res = {}
    cam_to_car = {}
    for cam_idx, cam_info in calib:
        cam_idx = str(cam_idx)
        cam_res[cam_idx] = (W, H) = (cam_info['width'], cam_info['height'])
        f1, f2, cx, cy, k1, k2, p1, p2, k3 = cam_info['intrinsics']
        cam_K[cam_idx] = np.asarray([(f1, 0, cx), (0, f2, cy), (0, 0, 1)])
        cam_distortion[cam_idx] = np.asarray([k1, k2, p1, p2, k3])
        cam_to_car[cam_idx] = np.asarray(cam_info['extrinsics']).reshape(4, 4)  # cam-to-vehicle

    frames = sorted(f[:-3] for f in os.listdir(seq_dir) if f.endswith('.jpg'))

    # from dust3r.viz import SceneViz
    # viz = SceneViz()

    for frame in tqdm(frames, leave=False):
        cam_idx = frame[-2]  # cam index
        assert cam_idx in '12345', f'bad {cam_idx=} in {frame=}'
        data = np.load(osp.join(seq_dir, frame + 'npz'))
        car_to_world = data['pose']
        W, H = cam_res[cam_idx]

        # load depthmap
        pos2d = data['pixels'].round().astype(np.uint16)
        x, y = pos2d.T
        pts3d = data['pts3d']  # already in the car frame
        pts3d = geotrf(axes_transformation @ inv(cam_to_car[cam_idx]), pts3d)
        # X=LEFT_RIGHT y=ALTITUDE z=DEPTH

        # load image
        image = imread_cv2(osp.join(seq_dir, frame + 'jpg'))

        # downscale image
        output_resolution = (resolution, 1) if W > H else (1, resolution)
        image, _, intrinsics2 = cropping.rescale_image_depthmap(image, None, cam_K[cam_idx], output_resolution)
        image.save(osp.join(out_dir, frame + 'jpg'), quality=80)

        # save as an EXR file? yes it's smaller (and easier to load)
        W, H = image.size
        depthmap = np.zeros((H, W), dtype=np.float32)
        pos2d = geotrf(intrinsics2 @ inv(cam_K[cam_idx]), pos2d).round().astype(np.int16)
        x, y = pos2d.T
        depthmap[y.clip(min=0, max=H - 1), x.clip(min=0, max=W - 1)] = pts3d[:, 2]
        cv2.imwrite(osp.join(out_dir, frame + 'exr'), depthmap)

        # save camera parametes
        cam2world = car_to_world @ cam_to_car[cam_idx] @ inv(axes_transformation)
        np.savez(osp.join(out_dir, frame + 'npz'), intrinsics=intrinsics2,
                 cam2world=cam2world, distortion=cam_distortion[cam_idx])

        # viz.add_rgbd(np.asarray(image), depthmap, intrinsics2, cam2world)
    # viz.show()


if __name__ == '__main__':
    parser = get_parser()
    args = parser.parse_args()
    main(args.waymo_dir, args.precomputed_pairs, args.output_dir, workers=args.workers)