Spaces:
Running
Running
File size: 10,808 Bytes
9fb6531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import argparse
import numpy as np
import imageio
import torch
from tqdm import tqdm
import time
import scipy
import scipy.io
import scipy.misc
from lib.model_test import D2Net
from lib.utils import preprocess_image
from lib.pyramid import process_multiscale
import cv2
import matplotlib.pyplot as plt
import os
from sys import exit, argv
from PIL import Image
from skimage.feature import match_descriptors
from skimage.measure import ransac
from skimage.transform import ProjectiveTransform, AffineTransform
import pydegensac
def extractSingle(image, model, device):
with torch.no_grad():
keypoints, scores, descriptors = process_multiscale(
image.to(device).unsqueeze(0),
model,
scales=[1]
)
keypoints = keypoints[:, [1, 0, 2]]
feat = {}
feat['keypoints'] = keypoints
feat['scores'] = scores
feat['descriptors'] = descriptors
return feat
def siftMatching(img1, img2, HFile1, HFile2, device):
if HFile1 is not None:
H1 = np.load(HFile1)
H2 = np.load(HFile2)
rgbFile1 = img1
img1 = Image.open(img1)
if(img1.mode != 'RGB'):
img1 = img1.convert('RGB')
img1 = np.array(img1)
if HFile1 is not None:
img1 = cv2.warpPerspective(img1, H1, dsize=(400,400))
#### Visualization ####
# cv2.imshow("Image", cv2.cvtColor(img1, cv2.COLOR_BGR2RGB))
# cv2.waitKey(0)
rgbFile2 = img2
img2 = Image.open(img2)
if(img2.mode != 'RGB'):
img2 = img2.convert('RGB')
img2 = np.array(img2)
if HFile2 is not None:
img2 = cv2.warpPerspective(img2, H2, dsize=(400,400))
#### Visualization ####
# cv2.imshow("Image", cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))
# cv2.waitKey(0)
# surf = cv2.xfeatures2d.SURF_create(100) # SURF
surf = cv2.xfeatures2d.SIFT_create()
kp1, des1 = surf.detectAndCompute(img1, None)
kp2, des2 = surf.detectAndCompute(img2, None)
matches = mnn_matcher(
torch.from_numpy(des1).float().to(device=device),
torch.from_numpy(des2).float().to(device=device)
)
src_pts = np.float32([ kp1[m[0]].pt for m in matches ]).reshape(-1, 2)
dst_pts = np.float32([ kp2[m[1]].pt for m in matches ]).reshape(-1, 2)
if(src_pts.shape[0] < 5 or dst_pts.shape[0] < 5):
return [], []
H, inliers = pydegensac.findHomography(src_pts, dst_pts, 8.0, 0.99, 10000)
n_inliers = np.sum(inliers)
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in src_pts[inliers]]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in dst_pts[inliers]]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(n_inliers)]
#### Visualization ####
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None)
image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB)
# cv2.imshow('Matches', image3)
# cv2.waitKey()
src_pts = np.float32([ inlier_keypoints_left[m.queryIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
dst_pts = np.float32([ inlier_keypoints_right[m.trainIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
if HFile1 is None:
return src_pts, dst_pts, image3, image3
orgSrc, orgDst = orgKeypoints(src_pts, dst_pts, H1, H2)
matchImg = drawOrg(cv2.imread(rgbFile1), cv2.imread(rgbFile2), orgSrc, orgDst)
return orgSrc, orgDst, matchImg, image3
def orgKeypoints(src_pts, dst_pts, H1, H2):
ones = np.ones((src_pts.shape[0], 1))
src_pts = np.hstack((src_pts, ones))
dst_pts = np.hstack((dst_pts, ones))
orgSrc = np.linalg.inv(H1) @ src_pts.T
orgDst = np.linalg.inv(H2) @ dst_pts.T
orgSrc = orgSrc/orgSrc[2, :]
orgDst = orgDst/orgDst[2, :]
orgSrc = np.asarray(orgSrc)[0:2, :]
orgDst = np.asarray(orgDst)[0:2, :]
return orgSrc, orgDst
def drawOrg(image1, image2, orgSrc, orgDst):
img1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
for i in range(orgSrc.shape[1]):
im1 = cv2.circle(img1, (int(orgSrc[0, i]), int(orgSrc[1, i])), 3, (0, 0, 255), 1)
for i in range(orgDst.shape[1]):
im2 = cv2.circle(img2, (int(orgDst[0, i]), int(orgDst[1, i])), 3, (0, 0, 255), 1)
im4 = cv2.hconcat([im1, im2])
for i in range(orgSrc.shape[1]):
im4 = cv2.line(im4, (int(orgSrc[0, i]), int(orgSrc[1, i])), (int(orgDst[0, i]) + im1.shape[1], int(orgDst[1, i])), (0, 255, 0), 1)
im4 = cv2.cvtColor(im4, cv2.COLOR_BGR2RGB)
# cv2.imshow("Image", im4)
# cv2.waitKey(0)
return im4
def getPerspKeypoints(rgbFile1, rgbFile2, HFile1, HFile2, model, device):
if HFile1 is None:
igp1, img1 = read_and_process_image(rgbFile1, H=None)
else:
H1 = np.load(HFile1)
igp1, img1 = read_and_process_image(rgbFile1, H=H1)
c,h,w = igp1.shape
if HFile2 is None:
igp2, img2 = read_and_process_image(rgbFile2, H=None)
else:
H2 = np.load(HFile2)
igp2, img2 = read_and_process_image(rgbFile2, H=H2)
feat1 = extractSingle(igp1, model, device)
feat2 = extractSingle(igp2, model, device)
matches = mnn_matcher(
torch.from_numpy(feat1['descriptors']).to(device=device),
torch.from_numpy(feat2['descriptors']).to(device=device),
)
pos_a = feat1["keypoints"][matches[:, 0], : 2]
pos_b = feat2["keypoints"][matches[:, 1], : 2]
H, inliers = pydegensac.findHomography(pos_a, pos_b, 8.0, 0.99, 10000)
pos_a = pos_a[inliers]
pos_b = pos_b[inliers]
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_a]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_b]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(len(pos_a))]
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None, matchColor=[0, 255, 0])
image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB)
#### Visualization ####
# cv2.imshow('Matches', image3)
# cv2.waitKey()
if HFile1 is None:
return pos_a, pos_b, image3, image3
orgSrc, orgDst = orgKeypoints(pos_a, pos_b, H1, H2)
matchImg = drawOrg(cv2.imread(rgbFile1), cv2.imread(rgbFile2), orgSrc, orgDst) # Reproject matches to perspective View
return orgSrc, orgDst, matchImg, image3
###### Ensemble
def read_and_process_image(img_path, resize=None, H=None, h=None, w=None, preprocessing='caffe'):
img1 = Image.open(img_path)
if resize:
img1 = img1.resize(resize)
if(img1.mode != 'RGB'):
img1 = img1.convert('RGB')
img1 = np.array(img1)
if H is not None:
img1 = cv2.warpPerspective(img1, H, dsize=(400, 400))
# cv2.imshow("Image", cv2.cvtColor(img1, cv2.COLOR_BGR2RGB))
# cv2.waitKey(0)
igp1 = torch.from_numpy(preprocess_image(img1, preprocessing=preprocessing).astype(np.float32))
return igp1, img1
def mnn_matcher_scorer(descriptors_a, descriptors_b, k=np.inf):
device = descriptors_a.device
sim = descriptors_a @ descriptors_b.t()
val1, nn12 = torch.max(sim, dim=1)
val2, nn21 = torch.max(sim, dim=0)
ids1 = torch.arange(0, sim.shape[0], device=device)
mask = (ids1 == nn21[nn12])
matches = torch.stack([ids1[mask], nn12[mask]]).t()
remaining_matches_dist = val1[mask]
return matches, remaining_matches_dist
def mnn_matcher(descriptors_a, descriptors_b):
device = descriptors_a.device
sim = descriptors_a @ descriptors_b.t()
nn12 = torch.max(sim, dim=1)[1]
nn21 = torch.max(sim, dim=0)[1]
ids1 = torch.arange(0, sim.shape[0], device=device)
mask = (ids1 == nn21[nn12])
matches = torch.stack([ids1[mask], nn12[mask]])
return matches.t().data.cpu().numpy()
def getPerspKeypointsEnsemble(model1, model2, rgbFile1, rgbFile2, HFile1, HFile2, device):
if HFile1 is None:
igp1, img1 = read_and_process_image(rgbFile1, H=None)
else:
H1 = np.load(HFile1)
igp1, img1 = read_and_process_image(rgbFile1, H=H1)
c,h,w = igp1.shape
if HFile2 is None:
igp2, img2 = read_and_process_image(rgbFile2, H=None)
else:
H2 = np.load(HFile2)
igp2, img2 = read_and_process_image(rgbFile2, H=H2)
with torch.no_grad():
keypoints_a1, scores_a1, descriptors_a1 = process_multiscale(
igp1.to(device).unsqueeze(0),
model1,
scales=[1]
)
keypoints_a1 = keypoints_a1[:, [1, 0, 2]]
keypoints_a2, scores_a2, descriptors_a2 = process_multiscale(
igp1.to(device).unsqueeze(0),
model2,
scales=[1]
)
keypoints_a2 = keypoints_a2[:, [1, 0, 2]]
keypoints_b1, scores_b1, descriptors_b1 = process_multiscale(
igp2.to(device).unsqueeze(0),
model1,
scales=[1]
)
keypoints_b1 = keypoints_b1[:, [1, 0, 2]]
keypoints_b2, scores_b2, descriptors_b2 = process_multiscale(
igp2.to(device).unsqueeze(0),
model2,
scales=[1]
)
keypoints_b2 = keypoints_b2[:, [1, 0, 2]]
# calculating matches for both models
matches1, dist_1 = mnn_matcher_scorer(
torch.from_numpy(descriptors_a1).to(device=device),
torch.from_numpy(descriptors_b1).to(device=device),
# len(matches1)
)
matches2, dist_2 = mnn_matcher_scorer(
torch.from_numpy(descriptors_a2).to(device=device),
torch.from_numpy(descriptors_b2).to(device=device),
# len(matches1)
)
full_matches = torch.cat([matches1, matches2])
full_dist = torch.cat([dist_1, dist_2])
assert len(full_dist)==(len(dist_1)+len(dist_2)), "something wrong"
k_final = len(full_dist)//2
# k_final = len(full_dist)
# k_final = max(len(dist_1), len(dist_2))
top_k_mask = torch.topk(full_dist, k=k_final)[1]
first = []
second = []
for valid_id in top_k_mask:
if valid_id<len(dist_1):
first.append(valid_id)
else:
second.append(valid_id-len(dist_1))
# final_matches = full_matches[top_k_mask]
matches1 = matches1[torch.tensor(first, device=device).long()].data.cpu().numpy()
matches2 = matches2[torch.tensor(second, device=device).long()].data.cpu().numpy()
pos_a1 = keypoints_a1[matches1[:, 0], : 2]
pos_b1 = keypoints_b1[matches1[:, 1], : 2]
pos_a2 = keypoints_a2[matches2[:, 0], : 2]
pos_b2 = keypoints_b2[matches2[:, 1], : 2]
pos_a = np.concatenate([pos_a1, pos_a2], 0)
pos_b = np.concatenate([pos_b1, pos_b2], 0)
# pos_a, pos_b, inliers = apply_ransac(pos_a, pos_b)
H, inliers = pydegensac.findHomography(pos_a, pos_b, 8.0, 0.99, 10000)
pos_a = pos_a[inliers]
pos_b = pos_b[inliers]
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_a]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_b]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(len(pos_a))]
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None, matchColor=[0, 255, 0])
image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB)
# cv2.imshow('Matches', image3)
# cv2.waitKey()
orgSrc, orgDst = orgKeypoints(pos_a, pos_b, H1, H2)
matchImg = drawOrg(cv2.imread(rgbFile1), cv2.imread(rgbFile2), orgSrc, orgDst)
return orgSrc, orgDst, matchImg, image3
if __name__ == '__main__':
WEIGHTS = '../models/rord.pth'
srcR = argv[1]
trgR = argv[2]
srcH = argv[3]
trgH = argv[4]
orgSrc, orgDst = getPerspKeypoints(srcR, trgR, srcH, trgH, WEIGHTS, ('gpu'))
|