File size: 4,668 Bytes
10b4a5f
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
10b4a5f
 
 
358ab8f
 
 
 
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import argparse
import os
import numpy as np
import h5py
import cv2
from numpy.core.numeric import indices
import pyxis as px
from tqdm import trange

import sys

ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.insert(0, ROOT_DIR)

from utils import evaluation_utils, train_utils

parser = argparse.ArgumentParser(description="checking training data.")
parser.add_argument("--meta_dir", type=str, default="dataset/valid")
parser.add_argument("--dataset_dir", type=str, default="dataset")
parser.add_argument("--desc_dir", type=str, default="desc")
parser.add_argument("--raw_dir", type=str, default="raw_data")
parser.add_argument("--desc_suffix", type=str, default="_root_1000.hdf5")
parser.add_argument("--vis_folder", type=str, default=None)
args = parser.parse_args()


if __name__ == "__main__":
    if args.vis_folder is not None and not os.path.exists(args.vis_folder):
        os.mkdir(args.vis_folder)

    pair_num_list = np.loadtxt(os.path.join(args.meta_dir, "pair_num.txt"), dtype=str)
    pair_seq_list, accu_pair_list = train_utils.parse_pair_seq(pair_num_list)
    total_pair = int(pair_num_list[0, 1])
    total_inlier_rate, total_corr_num, total_incorr_num = [], [], []
    pair_num_list = pair_num_list[1:]

    for index in trange(total_pair):
        seq = pair_seq_list[index]
        index_within_seq = index - accu_pair_list[seq]
        with h5py.File(os.path.join(args.dataset_dir, seq, "info.h5py"), "r") as data:
            corr = data["corr"][str(index_within_seq)][()]
            corr1, corr2 = corr[:, 0], corr[:, 1]
            incorr1, incorr2 = (
                data["incorr1"][str(index_within_seq)][()],
                data["incorr2"][str(index_within_seq)][()],
            )
            img_path1, img_path2 = (
                data["img_path1"][str(index_within_seq)][()][0].decode(),
                data["img_path2"][str(index_within_seq)][()][0].decode(),
            )
            img_name1, img_name2 = img_path1.split("/")[-1], img_path2.split("/")[-1]
            fea_path1, fea_path2 = os.path.join(
                args.desc_dir, seq, img_name1 + args.desc_suffix
            ), os.path.join(args.desc_dir, seq, img_name2 + args.desc_suffix)
            with h5py.File(fea_path1, "r") as fea1, h5py.File(fea_path2, "r") as fea2:
                desc1, kpt1 = fea1["descriptors"][()], fea1["keypoints"][()][:, :2]
                desc2, kpt2 = fea2["descriptors"][()], fea2["keypoints"][()][:, :2]
            sim_mat = desc1 @ desc2.T
            nn_index1, nn_index2 = np.argmax(sim_mat, axis=1), np.argmax(
                sim_mat, axis=0
            )
            mask_mutual = (nn_index2[nn_index1] == np.arange(len(nn_index1)))[corr1]
            mask_inlier = nn_index1[corr1] == corr2
            mask_nn_correct = np.logical_and(mask_mutual, mask_inlier)
            # statistics
            total_inlier_rate.append(mask_nn_correct.mean())
            total_corr_num.append(len(corr1))
            total_incorr_num.append((len(incorr1) + len(incorr2)) / 2)
            # dump visualization
            if args.vis_folder is not None:
                # draw corr
                img1, img2 = cv2.imread(
                    os.path.join(args.raw_dir, img_path1)
                ), cv2.imread(os.path.join(args.raw_dir, img_path2))
                corr1_pos, corr2_pos = np.take_along_axis(
                    kpt1, corr1[:, np.newaxis], axis=0
                ), np.take_along_axis(kpt2, corr2[:, np.newaxis], axis=0)
                dis_corr = evaluation_utils.draw_match(img1, img2, corr1_pos, corr2_pos)
                cv2.imwrite(
                    os.path.join(args.vis_folder, str(index) + ".png"), dis_corr
                )
                # draw incorr
                incorr1_pos, incorr2_pos = np.take_along_axis(
                    kpt1, incorr1[:, np.newaxis], axis=0
                ), np.take_along_axis(kpt2, incorr2[:, np.newaxis], axis=0)
                dis_incorr1, dis_incorr2 = evaluation_utils.draw_points(
                    img1, incorr1_pos
                ), evaluation_utils.draw_points(img2, incorr2_pos)
                cv2.imwrite(
                    os.path.join(args.vis_folder, str(index) + "_incorr1.png"),
                    dis_incorr1,
                )
                cv2.imwrite(
                    os.path.join(args.vis_folder, str(index) + "_incorr2.png"),
                    dis_incorr2,
                )

    print("NN matching accuracy: ", np.asarray(total_inlier_rate).mean())
    print("mean corr number: ", np.asarray(total_corr_num).mean())
    print("mean incorr number: ", np.asarray(total_incorr_num).mean())