File size: 4,874 Bytes
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
from torch.multiprocessing import Process, Manager, set_start_method, Pool
import functools
import argparse
import yaml
import numpy as np
import sys
import cv2
from tqdm import trange

set_start_method("spawn", force=True)


ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.insert(0, ROOT_DIR)

from components import load_component
from utils import evaluation_utils, metrics

parser = argparse.ArgumentParser(description="dump eval data.")
parser.add_argument(
    "--config_path", type=str, default="configs/eval/scannet_eval_sgm.yaml"
)
parser.add_argument("--num_process_match", type=int, default=4)
parser.add_argument("--num_process_eval", type=int, default=4)
parser.add_argument("--vis_folder", type=str, default=None)
args = parser.parse_args()


def feed_match(info, matcher):
    x1, x2, desc1, desc2, size1, size2 = (
        info["x1"],
        info["x2"],
        info["desc1"],
        info["desc2"],
        info["img1"].shape[:2],
        info["img2"].shape[:2],
    )
    test_data = {
        "x1": x1,
        "x2": x2,
        "desc1": desc1,
        "desc2": desc2,
        "size1": np.flip(np.asarray(size1)),
        "size2": np.flip(np.asarray(size2)),
    }
    corr1, corr2 = matcher.run(test_data)
    return [corr1, corr2]


def reader_handler(config, read_que):
    reader = load_component("reader", config["name"], config)
    for index in range(len(reader)):
        index += 0
        info = reader.run(index)
        read_que.put(info)
    read_que.put("over")


def match_handler(config, read_que, match_que):
    matcher = load_component("matcher", config["name"], config)
    match_func = functools.partial(feed_match, matcher=matcher)
    pool = Pool(args.num_process_match)
    cache = []
    while True:
        item = read_que.get()
        # clear cache
        if item == "over":
            if len(cache) != 0:
                results = pool.map(match_func, cache)
                for cur_item, cur_result in zip(cache, results):
                    cur_item["corr1"], cur_item["corr2"] = cur_result[0], cur_result[1]
                    match_que.put(cur_item)
            match_que.put("over")
            break
        cache.append(item)
        # print(len(cache))
        if len(cache) == args.num_process_match:
            # matching in parallel
            results = pool.map(match_func, cache)
            for cur_item, cur_result in zip(cache, results):
                cur_item["corr1"], cur_item["corr2"] = cur_result[0], cur_result[1]
                match_que.put(cur_item)
            cache = []
    pool.close()
    pool.join()


def evaluate_handler(config, match_que):
    evaluator = load_component("evaluator", config["name"], config)
    pool = Pool(args.num_process_eval)
    cache = []
    for _ in trange(config["num_pair"]):
        item = match_que.get()
        if item == "over":
            if len(cache) != 0:
                results = pool.map(evaluator.run, cache)
                for cur_res in results:
                    evaluator.res_inqueue(cur_res)
            break
        cache.append(item)
        if len(cache) == args.num_process_eval:
            results = pool.map(evaluator.run, cache)
            for cur_res in results:
                evaluator.res_inqueue(cur_res)
            cache = []
        if args.vis_folder is not None:
            # dump visualization
            corr1_norm, corr2_norm = evaluation_utils.normalize_intrinsic(
                item["corr1"], item["K1"]
            ), evaluation_utils.normalize_intrinsic(item["corr2"], item["K2"])
            inlier_mask = metrics.compute_epi_inlier(
                corr1_norm, corr2_norm, item["e"], config["inlier_th"]
            )
            display = evaluation_utils.draw_match(
                item["img1"], item["img2"], item["corr1"], item["corr2"], inlier_mask
            )
            cv2.imwrite(
                os.path.join(args.vis_folder, str(item["index"]) + ".png"), display
            )
    evaluator.parse()


if __name__ == "__main__":
    with open(args.config_path, "r") as f:
        config = yaml.load(f)
    if args.vis_folder is not None and not os.path.exists(args.vis_folder):
        os.mkdir(args.vis_folder)

    read_que, match_que, estimate_que = (
        Manager().Queue(maxsize=100),
        Manager().Queue(maxsize=100),
        Manager().Queue(maxsize=100),
    )

    read_process = Process(target=reader_handler, args=(config["reader"], read_que))
    match_process = Process(
        target=match_handler, args=(config["matcher"], read_que, match_que)
    )
    evaluate_process = Process(
        target=evaluate_handler, args=(config["evaluator"], match_que)
    )

    read_process.start()
    match_process.start()
    evaluate_process.start()

    read_process.join()
    match_process.join()
    evaluate_process.join()