Spaces:
Running
Running
File size: 10,321 Bytes
10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import numpy as np
import torch
import torch.utils.data as data
import cv2
import os
import h5py
import random
import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))
sys.path.insert(0, ROOT_DIR)
from utils import train_utils, evaluation_utils
torch.multiprocessing.set_sharing_strategy("file_system")
class Offline_Dataset(data.Dataset):
def __init__(self, config, mode):
assert mode == "train" or mode == "valid"
self.config = config
self.mode = mode
metadir = (
os.path.join(config.dataset_path, "valid")
if mode == "valid"
else os.path.join(config.dataset_path, "train")
)
pair_num_list = np.loadtxt(os.path.join(metadir, "pair_num.txt"), dtype=str)
self.total_pairs = int(pair_num_list[0, 1])
self.pair_seq_list, self.accu_pair_num = train_utils.parse_pair_seq(
pair_num_list
)
def collate_fn(self, batch):
batch_size, num_pts = len(batch), batch[0]["x1"].shape[0]
data = {}
dtype = [
"x1",
"x2",
"kpt1",
"kpt2",
"desc1",
"desc2",
"num_corr",
"num_incorr1",
"num_incorr2",
"e_gt",
"pscore1",
"pscore2",
"img_path1",
"img_path2",
]
for key in dtype:
data[key] = []
for sample in batch:
for key in dtype:
data[key].append(sample[key])
for key in [
"x1",
"x2",
"kpt1",
"kpt2",
"desc1",
"desc2",
"e_gt",
"pscore1",
"pscore2",
]:
data[key] = torch.from_numpy(np.stack(data[key])).float()
for key in ["num_corr", "num_incorr1", "num_incorr2"]:
data[key] = torch.from_numpy(np.stack(data[key])).int()
# kpt augmentation with random homography
if self.mode == "train" and self.config.data_aug:
homo_mat = torch.from_numpy(
train_utils.get_rnd_homography(batch_size)
).unsqueeze(1)
aug_seed = random.random()
if aug_seed < 0.5:
x1_homo = torch.cat(
[data["x1"], torch.ones([batch_size, num_pts, 1])], dim=-1
).unsqueeze(-1)
x1_homo = torch.matmul(homo_mat.float(), x1_homo.float()).squeeze(-1)
data["aug_x1"] = x1_homo[:, :, :2] / x1_homo[:, :, 2].unsqueeze(-1)
data["aug_x2"] = data["x2"]
else:
x2_homo = torch.cat(
[data["x2"], torch.ones([batch_size, num_pts, 1])], dim=-1
).unsqueeze(-1)
x2_homo = torch.matmul(homo_mat.float(), x2_homo.float()).squeeze(-1)
data["aug_x2"] = x2_homo[:, :, :2] / x2_homo[:, :, 2].unsqueeze(-1)
data["aug_x1"] = data["x1"]
else:
data["aug_x1"], data["aug_x2"] = data["x1"], data["x2"]
return data
def __getitem__(self, index):
seq = self.pair_seq_list[index]
index_within_seq = index - self.accu_pair_num[seq]
with h5py.File(
os.path.join(self.config.dataset_path, seq, "info.h5py"), "r"
) as data:
R, t = (
data["dR"][str(index_within_seq)][()],
data["dt"][str(index_within_seq)][()],
)
egt = np.reshape(
np.matmul(
np.reshape(
evaluation_utils.np_skew_symmetric(
t.astype("float64").reshape(1, 3)
),
(3, 3),
),
np.reshape(R.astype("float64"), (3, 3)),
),
(3, 3),
)
egt = egt / np.linalg.norm(egt)
K1, K2 = (
data["K1"][str(index_within_seq)][()],
data["K2"][str(index_within_seq)][()],
)
size1, size2 = (
data["size1"][str(index_within_seq)][()],
data["size2"][str(index_within_seq)][()],
)
img_path1, img_path2 = (
data["img_path1"][str(index_within_seq)][()][0].decode(),
data["img_path2"][str(index_within_seq)][()][0].decode(),
)
img_name1, img_name2 = img_path1.split("/")[-1], img_path2.split("/")[-1]
img_path1, img_path2 = os.path.join(
self.config.rawdata_path, img_path1
), os.path.join(self.config.rawdata_path, img_path2)
fea_path1, fea_path2 = os.path.join(
self.config.desc_path, seq, img_name1 + self.config.desc_suffix
), os.path.join(
self.config.desc_path, seq, img_name2 + self.config.desc_suffix
)
with h5py.File(fea_path1, "r") as fea1, h5py.File(fea_path2, "r") as fea2:
desc1, kpt1, pscore1 = (
fea1["descriptors"][()],
fea1["keypoints"][()][:, :2],
fea1["keypoints"][()][:, 2],
)
desc2, kpt2, pscore2 = (
fea2["descriptors"][()],
fea2["keypoints"][()][:, :2],
fea2["keypoints"][()][:, 2],
)
kpt1, kpt2, desc1, desc2 = (
kpt1[: self.config.num_kpt],
kpt2[: self.config.num_kpt],
desc1[: self.config.num_kpt],
desc2[: self.config.num_kpt],
)
# normalize kpt
if self.config.input_normalize == "intrinsic":
x1, x2 = np.concatenate(
[kpt1, np.ones([kpt1.shape[0], 1])], axis=-1
), np.concatenate([kpt2, np.ones([kpt2.shape[0], 1])], axis=-1)
x1, x2 = (
np.matmul(np.linalg.inv(K1), x1.T).T[:, :2],
np.matmul(np.linalg.inv(K2), x2.T).T[:, :2],
)
elif self.config.input_normalize == "img":
x1, x2 = (kpt1 - size1 / 2) / size1, (kpt2 - size2 / 2) / size2
S1_inv, S2_inv = np.asarray(
[
[size1[0], 0, 0.5 * size1[0]],
[0, size1[1], 0.5 * size1[1]],
[0, 0, 1],
]
), np.asarray(
[
[size2[0], 0, 0.5 * size2[0]],
[0, size2[1], 0.5 * size2[1]],
[0, 0, 1],
]
)
M1, M2 = np.matmul(np.linalg.inv(K1), S1_inv), np.matmul(
np.linalg.inv(K2), S2_inv
)
egt = np.matmul(np.matmul(M2.transpose(), egt), M1)
egt = egt / np.linalg.norm(egt)
else:
raise NotImplementedError
corr = data["corr"][str(index_within_seq)][()]
incorr1, incorr2 = (
data["incorr1"][str(index_within_seq)][()],
data["incorr2"][str(index_within_seq)][()],
)
# permute kpt
valid_corr = corr[corr.max(axis=-1) < self.config.num_kpt]
valid_incorr1, valid_incorr2 = (
incorr1[incorr1 < self.config.num_kpt],
incorr2[incorr2 < self.config.num_kpt],
)
num_corr, num_incorr1, num_incorr2 = (
len(valid_corr),
len(valid_incorr1),
len(valid_incorr2),
)
mask1_invlaid, mask2_invalid = np.ones(x1.shape[0]).astype(bool), np.ones(
x2.shape[0]
).astype(bool)
mask1_invlaid[valid_corr[:, 0]] = False
mask2_invalid[valid_corr[:, 1]] = False
mask1_invlaid[valid_incorr1] = False
mask2_invalid[valid_incorr2] = False
invalid_index1, invalid_index2 = (
np.nonzero(mask1_invlaid)[0],
np.nonzero(mask2_invalid)[0],
)
# random sample from point w/o valid annotation
cur_kpt1 = self.config.num_kpt - num_corr - num_incorr1
cur_kpt2 = self.config.num_kpt - num_corr - num_incorr2
if invalid_index1.shape[0] < cur_kpt1:
sub_idx1 = np.concatenate(
[
np.arange(len(invalid_index1)),
np.random.randint(
len(invalid_index1), size=cur_kpt1 - len(invalid_index1)
),
]
)
if invalid_index1.shape[0] >= cur_kpt1:
sub_idx1 = np.random.choice(len(invalid_index1), cur_kpt1, replace=False)
if invalid_index2.shape[0] < cur_kpt2:
sub_idx2 = np.concatenate(
[
np.arange(len(invalid_index2)),
np.random.randint(
len(invalid_index2), size=cur_kpt2 - len(invalid_index2)
),
]
)
if invalid_index2.shape[0] >= cur_kpt2:
sub_idx2 = np.random.choice(len(invalid_index2), cur_kpt2, replace=False)
per_idx1, per_idx2 = np.concatenate(
[valid_corr[:, 0], valid_incorr1, invalid_index1[sub_idx1]]
), np.concatenate([valid_corr[:, 1], valid_incorr2, invalid_index2[sub_idx2]])
pscore1, pscore2 = (
pscore1[per_idx1][:, np.newaxis],
pscore2[per_idx2][:, np.newaxis],
)
x1, x2 = x1[per_idx1][:, :2], x2[per_idx2][:, :2]
desc1, desc2 = desc1[per_idx1], desc2[per_idx2]
kpt1, kpt2 = kpt1[per_idx1], kpt2[per_idx2]
return {
"x1": x1,
"x2": x2,
"kpt1": kpt1,
"kpt2": kpt2,
"desc1": desc1,
"desc2": desc2,
"num_corr": num_corr,
"num_incorr1": num_incorr1,
"num_incorr2": num_incorr2,
"e_gt": egt,
"pscore1": pscore1,
"pscore2": pscore2,
"img_path1": img_path1,
"img_path2": img_path2,
}
def __len__(self):
return self.total_pairs
|