File size: 11,756 Bytes
c0283b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
<p align="center">
  <a href="README.md"><img src="https://img.shields.io/badge/English-white" alt='English'></a>
  <a href="README.zh-CN-simplified.md"><img src="https://img.shields.io/badge/%E4%B8%AD%E6%96%87-white" alt='Chinese'></a>
</p>

<h2 align="center">GIM: Learning Generalizable Image Matcher From Internet Videos</h2>


<div align="center">
	<a href="https://www.youtube.com/embed/FU_MJLD8LeY">
		<img src="assets/demo/video.png" width="50%" alt="Overview Video">
	</a>
</div>
<p></p>

<div align="center">

<a href="https://iclr.cc/Conferences/2024"><img src="https://img.shields.io/badge/%F0%9F%8C%9F_ICLR'2024_Spotlight-37414c" alt='ICLR 2024 Spotlight'></a>
<a href="https://xuelunshen.com/gim"><img src="https://img.shields.io/badge/Project_Page-3A464E?logo=gumtree" alt='Project Page'></a>
<a href="https://arxiv.org/abs/2402.11095"><img src="https://img.shields.io/badge/arXiv-2402.11095-b31b1b?logo=arxiv" alt='arxiv'></a>
<a href="https://huggingface.co/spaces/xuelunshen/gim-online"><img src="https://img.shields.io/badge/%F0%9F%A4%97_Hugging_Face-Space-F0CD4B?labelColor=666EEE" alt='HuggingFace Space'></a>
<a href="https://www.youtube.com/watch?v=FU_MJLD8LeY"><img src="https://img.shields.io/badge/Overview_Video-E33122?logo=Youtube" alt='Overview Video'></a>
![GitHub Repo stars](https://img.shields.io/github/stars/xuelunshen/gim?style=social)

<!-- <a href="https://xuelunshen.com/gim"><img src="https://img.shields.io/badge/📊_Zero--shot_Image_Matching_Evaluation Benchmark-75BC66" alt='Zero-shot Evaluation Benchmark'></a> -->
<!-- <a href="https://xuelunshen.com/gim"><img src="https://img.shields.io/badge/Source_Code-black?logo=Github" alt='Github Source Code'></a> -->

<a href="https://en.xmu.edu.cn"><img src="https://img.shields.io/badge/Xiamen_University-183F9D?logo=Google%20Scholar&logoColor=white" alt='Intel'></a>
<a href="https://www.intel.com"><img src="https://img.shields.io/badge/Labs-0071C5?logo=intel" alt='Intel'></a>
<a href="https://www.dji.com"><img src="https://img.shields.io/badge/DJI-131313?logo=DJI" alt='Intel'></a>

</div>

|      | <div align="left">方法</div>                                 | <div align="left">平均<br />AUC@5°<br />(%) ↑</div> | GL3      | BLE      | ETI      | ETO      | KIT      | WEA      | SEA      | NIG      | MUL      | SCE      | ICL      | GTA      |
| ---- | ------------------------------------------------------------ | --------------------------------------------------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
|      |                                                              | 传统算法                                            |          |          |          |          |          |          |          |          |          |          |          |          |
|      | RootSIFT                                                     | 31.8                                                | 43.5     | 33.6     | 49.9     | 48.7     | 35.2     | 21.4     | 44.1     | 14.7     | 33.4     | 7.6      | 14.8     | 35.1     |
|      |                                                              | 稀疏匹配                                            |          |          |          |          |          |          |          |          |          |          |          |          |
|      | [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork) (in) | 21.6                                                | 19.2     | 16.0     | 38.2     | 37.7     | 22.0     | 20.8     | 40.8     | 13.7     | 21.4     | 0.8      | 9.6      | 18.8     |
|      | SuperGlue (out)                                              | 31.2                                                | 29.7     | 24.2     | 52.3     | 59.3     | 28.0     | 28.4     | 48.0     | 20.9     | 33.4     | 4.5      | 16.6     | 29.3     |
|      | **GIM_SuperGlue**<br />(50h)                                 | 34.3                                                | 43.2     | 34.2     | 58.7     | 61.0     | 29.0     | 28.3     | 48.4     | 18.8     | 34.8     | 2.8      | 15.4     | 36.5     |
|      | [LightGlue](https://github.com/cvg/LightGlue)                | 31.7                                                | 28.9     | 23.9     | 51.6     | 56.3     | 32.1     | 29.5     | 48.9     | 22.2     | 37.4     | 3.0      | 16.2     | 30.4     |
| ✅    | **GIM_LightGlue**<br />(100h)                                | **38.3**                                            | **46.6** | **38.1** | **61.7** | **62.9** | **34.9** | **31.2** | **50.6** | **22.6** | **41.8** | **6.9**  | **19.0** | **43.4** |
|      |                                                              | 半密集匹配                                          |          |          |          |          |          |          |          |          |          |          |          |          |
|      | [LoFTR](https://github.com/zju3dv/LoFTR) (in)                | 10.7                                                | 5.6      | 5.1      | 11.8     | 7.5      | 17.2     | 6.4      | 9.7      | 3.5      | 22.4     | 1.3      | 14.9     | 23.4     |
|      | LoFTR (out)                                                  | 33.1                                                | 29.3     | 22.5     | 51.1     | 60.1     | **36.1** | **29.7** | **48.6** | **19.4** | 37.0     | **13.1** | 20.5     | 30.3     |
|      | **GIM_LoFTR**<br />(50h)                                     | **39.1**                                            | **50.6** | **43.9** | **62.6** | **61.6** | 35.9     | 26.8     | 47.5     | 17.6     | **41.4** | 10.2     | **25.6** | **45.0** |
| 🟩    | **GIM_LoFTR**<br />(100h)                                    | ToDO                                                |          |          |          |          |          |          |          |          |          |          |          |          |
|      |                                                              | 密集匹配                                            |          |          |          |          |          |          |          |          |          |          |          |          |
|      | [DKM](https://github.com/Parskatt/DKM) (in)                  | 46.2                                                | 44.4     | 37.0     | 65.7     | 73.3     | 40.2     | 32.8     | 51.0     | 23.1     | 54.7     | 33.0     | **43.6** | 55.7     |
|      | DKM (out)                                                    | 45.8                                                | 45.7     | 37.0     | 66.8     | 75.8     | 41.7     | 33.5     | 51.4     | 22.9     | 56.3     | 27.3     | 37.8     | 52.9     |
|      | **GIM_DKM**<br />(50h)                                       | 49.4                                                | 58.3     | 47.8     | 72.7     | 74.5     | 42.1     | **34.6** | 52.0     | **25.1** | 53.7     | 32.3     | 38.8     | 60.6     |
| ✅    | **GIM_DKM**<br />(100h)                                      | **51.2**                                            | **63.3** | **53.0** | **73.9** | 76.7     | **43.4** | **34.6** | **52.5** | 24.5     | 56.6     | 32.2     | 42.5     | **61.6** |
|      | [RoMa](https://github.com/Parskatt/RoMa) (in)                | 46.7                                                | 46.0     | 39.3     | 68.8     | 77.2     | 36.5     | 31.1     | 50.4     | 20.8     | 57.8     | **33.8** | 41.7     | 57.6     |
|      | RoMa (out)                                                   | 48.8                                                | 48.3     | 40.6     | 73.6     | **79.8** | 39.9     | 34.4     | 51.4     | 24.2     | **59.9** | 33.7     | 41.3     | 59.2     |
| 🟩    | **GIM_RoMa**                                                 | ToDO                                                |          |          |          |          |          |          |          |          |          |          |          |          |

> 该表格的数据来自论文提出的 **ZEB**: <u>Zero-shot Evaluation Benchmark for Image Matching</u>, 该 benchmark 由 12 个涵盖各种场景、天气和相机模型的公开数据集组成,对应了表格中从 GL3 开始的 12 列测试序列。我们会尽快公开 **ZEB**。

## ✅ 待办清单

- [ ] Inference code
  - [ ] gim_roma
  - [x] gim_dkm
  - [ ] gim_loftr
  - [x] gim_lightglue
- [ ] Training code

> 剩余的开源工作我们还在抓紧进行,感谢大家的关注。

## 🤗 在线体验

去 [Huggingface](https://huggingface.co/spaces/xuelunshen/gim-online) 在线快速体验我们模型的效果

## ⚙️ 运行环境

我在新服务器上是使用下面的命令进行运行环境的安装。
```bash
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install albumentations==1.0.1 --no-binary=imgaug,albumentations
pip install pytorch-lightning==1.5.10
pip install opencv-python==4.5.3.56
pip install imagesize==1.2.0
pip install kornia==0.6.10
pip install einops==0.3.0
pip install loguru==0.5.3
pip install joblib==1.0.1
pip install yacs==0.1.8
pip install h5py==3.1.0
```

## 🔨 使用

克隆本仓库

```bash
git clone https://github.com/xuelunshen/gim.git
cd gim
```

从 [Google Drive](https://drive.google.com/file/d/1gk97V4IROnR1Nprq10W9NCFUv2mxXR_-/view?usp=sharing) 下载 `gim_dkm` 的模型参数

将模型参数放在文件夹 `weights` 里面

运行下面的命令
```bash
python demo.py --model gim_dkm
```
or
```bash
python demo.py --model gim_lightglue
```

代码会将 `assets/demo` 中的 `a1.png` 和 `a2.png` 进行匹配</br>
输出 `a1_a2_match.png` 和 `a1_a2_warp.png`

<details>
<summary>
	点击这里查看
	<code>a1.png</code>

	<code>a2.png</code>.
</summary>
<p float="left">
  <img src="assets/demo/a1.png" width="25%" />
  <img src="assets/demo/a2.png" width="25%" /> 
</p>
</details>



<details>
<summary>
	点击这里查看
	<code>a1_a2_match.png</code>.
</summary>
<p align="left">
	<img src="assets/demo/_a1_a2_match.png" width="50%">
</p>
<p><code>a1_a2_match.png</code> 是两张图像匹配的可视化</p>
</details>

<details>
<summary>
	点击这里查看
	<code>a1_a2_warp.png</code>.
</summary>
<p align="left">
	<img src="assets/demo/_a1_a2_warp.png" width="50%">
</p>
<p><code>a1_a2_warp.png</code> 是将<code>图像a2</code>用 homography 投影到<code>图像a1</code>的效果</p>
</details>

还有更多图像在文件夹 `assets/demo` 中, 大家都可以尝试拿来匹配看看.

<details>
<summary>
	点击这里查看更多图像
</summary>
<p float="left">
  <img src="assets/demo/b1.png" width="15%" />
  <img src="assets/demo/b2.png" width="15%" /> 
  <img src="assets/demo/c1.png" width="15%" />
  <img src="assets/demo/c2.png" width="15%" /> 
  <img src="assets/demo/d1.png" width="15%" />
  <img src="assets/demo/d2.png" width="15%" /> 
</p>
</details>

## 📌 引用

如果我们的代码对你的研究有帮助, 请给我们的论文一个引用 ❤️ 并给 gim 的仓库点个小星星 ⭐️ 吧, 多谢啦~

```bibtex
@inproceedings{
xuelun2024gim,
title={GIM: Learning Generalizable Image Matcher From Internet Videos},
author={Xuelun Shen and Zhipeng Cai and Wei Yin and Matthias Müller and Zijun Li and Kaixuan Wang and Xiaozhi Chen and Cheng Wang},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024}
}
```

## License

This repository is under the MIT License. This content/model is provided here for research purposes only. Any use beyond this is your sole responsibility and subject to your securing the necessary rights for your purpose.