File size: 4,819 Bytes
c0283b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import string

import h5py
import torch

from ..datasets.base_dataset import collate
from ..settings import DATA_PATH
from ..utils.tensor import batch_to_device
from .base_model import BaseModel
from .utils.misc import pad_to_length


def pad_local_features(pred: dict, seq_l: int):
    pred["keypoints"] = pad_to_length(
        pred["keypoints"],
        seq_l,
        -2,
        mode="random_c",
    )
    if "keypoint_scores" in pred.keys():
        pred["keypoint_scores"] = pad_to_length(
            pred["keypoint_scores"], seq_l, -1, mode="zeros"
        )
    if "descriptors" in pred.keys():
        pred["descriptors"] = pad_to_length(
            pred["descriptors"], seq_l, -2, mode="random"
        )
    if "scales" in pred.keys():
        pred["scales"] = pad_to_length(pred["scales"], seq_l, -1, mode="zeros")
    if "oris" in pred.keys():
        pred["oris"] = pad_to_length(pred["oris"], seq_l, -1, mode="zeros")

    if "depth_keypoints" in pred.keys():
        pred["depth_keypoints"] = pad_to_length(
            pred["depth_keypoints"], seq_l, -1, mode="zeros"
        )
    if "valid_depth_keypoints" in pred.keys():
        pred["valid_depth_keypoints"] = pad_to_length(
            pred["valid_depth_keypoints"], seq_l, -1, mode="zeros"
        )
    return pred


def pad_line_features(pred, seq_l: int = None):
    raise NotImplementedError


def recursive_load(grp, pkeys):
    return {
        k: torch.from_numpy(grp[k].__array__())
        if isinstance(grp[k], h5py.Dataset)
        else recursive_load(grp[k], list(grp.keys()))
        for k in pkeys
    }


class CacheLoader(BaseModel):
    default_conf = {
        "path": "???",  # can be a format string like exports/{scene}/
        "data_keys": None,  # load all keys
        "device": None,  # load to same device as data
        "trainable": False,
        "add_data_path": True,
        "collate": True,
        "scale": ["keypoints", "lines", "orig_lines"],
        "padding_fn": None,
        "padding_length": None,  # required for batching!
        "numeric_type": "float32",  # [None, "float16", "float32", "float64"]
    }

    required_data_keys = ["name"]  # we need an identifier

    def _init(self, conf):
        self.hfiles = {}
        self.padding_fn = conf.padding_fn
        if self.padding_fn is not None:
            self.padding_fn = eval(self.padding_fn)
        self.numeric_dtype = {
            None: None,
            "float16": torch.float16,
            "float32": torch.float32,
            "float64": torch.float64,
        }[conf.numeric_type]

    def _forward(self, data):
        preds = []
        device = self.conf.device
        if not device:
            devices = set(
                [v.device for v in data.values() if isinstance(v, torch.Tensor)]
            )
            if len(devices) == 0:
                device = "cpu"
            else:
                assert len(devices) == 1
                device = devices.pop()

        var_names = [x[1] for x in string.Formatter().parse(self.conf.path) if x[1]]
        for i, name in enumerate(data["name"]):
            fpath = self.conf.path.format(**{k: data[k][i] for k in var_names})
            if self.conf.add_data_path:
                fpath = DATA_PATH / fpath
            hfile = h5py.File(str(fpath), "r")
            grp = hfile[name]
            pkeys = (
                self.conf.data_keys if self.conf.data_keys is not None else grp.keys()
            )
            pred = recursive_load(grp, pkeys)
            if self.numeric_dtype is not None:
                pred = {
                    k: v
                    if not isinstance(v, torch.Tensor) or not torch.is_floating_point(v)
                    else v.to(dtype=self.numeric_dtype)
                    for k, v in pred.items()
                }
            pred = batch_to_device(pred, device)
            for k, v in pred.items():
                for pattern in self.conf.scale:
                    if k.startswith(pattern):
                        view_idx = k.replace(pattern, "")
                        scales = (
                            data["scales"]
                            if len(view_idx) == 0
                            else data[f"view{view_idx}"]["scales"]
                        )
                        pred[k] = pred[k] * scales[i]
            # use this function to fix number of keypoints etc.
            if self.padding_fn is not None:
                pred = self.padding_fn(pred, self.conf.padding_length)
            preds.append(pred)
            hfile.close()
        if self.conf.collate:
            return batch_to_device(collate(preds), device)
        else:
            assert len(preds) == 1
            return batch_to_device(preds[0], device)

    def loss(self, pred, data):
        raise NotImplementedError