File size: 5,205 Bytes
94cb1cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import numpy as np
import os
import sys

import shutil

import torch
import torch.optim as optim

from torch.utils.data import DataLoader

from tqdm import tqdm

import warnings

from lib.exceptions import NoGradientError
from lib.losses.lossPhotoTourism import loss_function
from lib.model import D2Net
from lib.dataloaders.datasetPhotoTourism_ipr import PhotoTourismIPR


# CUDA
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")

# Seed
torch.manual_seed(1)
if use_cuda:
	torch.cuda.manual_seed(1)
np.random.seed(1)

# Argument parsing
parser = argparse.ArgumentParser(description='Training script')

parser.add_argument(
	'--dataset_path', type=str, default="/scratch/udit/phototourism/",
	help='path to the dataset'
)

parser.add_argument(
	'--preprocessing', type=str, default='caffe',
	help='image preprocessing (caffe or torch)'
)

parser.add_argument(
	'--init_model', type=str, default='models/d2net.pth',
	help='path to the initial model'
)

parser.add_argument(
	'--num_epochs', type=int, default=10,
	help='number of training epochs'
)
parser.add_argument(
	'--lr', type=float, default=1e-3,
	help='initial learning rate'
)
parser.add_argument(
	'--batch_size', type=int, default=1,
	help='batch size'
)
parser.add_argument(
	'--num_workers', type=int, default=16,
	help='number of workers for data loading'
)

parser.add_argument(
	'--log_interval', type=int, default=250,
	help='loss logging interval'
)

parser.add_argument(
	'--log_file', type=str, default='log.txt',
	help='loss logging file'
)

parser.add_argument(
	'--plot', dest='plot', action='store_true',
	help='plot training pairs'
)
parser.set_defaults(plot=False)

parser.add_argument(
	'--checkpoint_directory', type=str, default='checkpoints',
	help='directory for training checkpoints'
)
parser.add_argument(
	'--checkpoint_prefix', type=str, default='rord',
	help='prefix for training checkpoints'
)

args = parser.parse_args()
print(args)

# Creating CNN model
model = D2Net(
	model_file=args.init_model,
	use_cuda=False
)
model = model.to(device)

# Optimizer
optimizer = optim.Adam(
	filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr
)

training_dataset = PhotoTourismIPR(
	base_path=args.dataset_path,
	preprocessing=args.preprocessing
)
training_dataset.build_dataset()

training_dataloader = DataLoader(
	training_dataset,
	batch_size=args.batch_size,
	num_workers=args.num_workers
)

# Define epoch function
def process_epoch(
		epoch_idx,
		model, loss_function, optimizer, dataloader, device,
		log_file, args, train=True, plot_path=None
):
	epoch_losses = []

	torch.set_grad_enabled(train)

	progress_bar = tqdm(enumerate(dataloader), total=len(dataloader))
	for batch_idx, batch in progress_bar:
		if train:
			optimizer.zero_grad()

		batch['train'] = train
		batch['epoch_idx'] = epoch_idx
		batch['batch_idx'] = batch_idx
		batch['batch_size'] = args.batch_size
		batch['preprocessing'] = args.preprocessing
		batch['log_interval'] = args.log_interval

		try:
			loss = loss_function(model, batch, device, plot=args.plot, plot_path=plot_path)
		except NoGradientError:
			# print("failed")
			continue

		current_loss = loss.data.cpu().numpy()[0]
		epoch_losses.append(current_loss)

		progress_bar.set_postfix(loss=('%.4f' % np.mean(epoch_losses)))

		if batch_idx % args.log_interval == 0:
			log_file.write('[%s] epoch %d - batch %d / %d - avg_loss: %f\n' % (
				'train' if train else 'valid',
				epoch_idx, batch_idx, len(dataloader), np.mean(epoch_losses)
			))

		if train:
			loss.backward()
			optimizer.step()

	log_file.write('[%s] epoch %d - avg_loss: %f\n' % (
		'train' if train else 'valid',
		epoch_idx,
		np.mean(epoch_losses)
	))
	log_file.flush()

	return np.mean(epoch_losses)


# Create the checkpoint directory
checkpoint_directory = os.path.join(args.checkpoint_directory, args.checkpoint_prefix)
if os.path.isdir(checkpoint_directory):
	print('[Warning] Checkpoint directory already exists.')
else:
	os.makedirs(checkpoint_directory, exist_ok=True)

# Open the log file for writing
log_file = os.path.join(checkpoint_directory,args.log_file)
if os.path.exists(log_file):
	print('[Warning] Log file already exists.')
log_file = open(log_file, 'a+')

# Create the folders for plotting if need be
plot_path=None
if args.plot:
	plot_path = os.path.join(checkpoint_directory,'train_vis')
	if os.path.isdir(plot_path):
		print('[Warning] Plotting directory already exists.')
	else:
		os.makedirs(plot_path, exist_ok=True)


# Initialize the history
train_loss_history = []

# Start the training
for epoch_idx in range(1, args.num_epochs + 1):
	# Process epoch
	train_loss_history.append(
		process_epoch(
			epoch_idx,
			model, loss_function, optimizer, training_dataloader, device,
			log_file, args, train=True, plot_path=plot_path
		)
	)

	# Save the current checkpoint
	checkpoint_path = os.path.join(
		checkpoint_directory,
		'%02d.pth' % (epoch_idx)
	)
	checkpoint = {
		'args': args,
		'epoch_idx': epoch_idx,
		'model': model.state_dict(),
		'optimizer': optimizer.state_dict(),
		'train_loss_history': train_loss_history,
	}
	torch.save(checkpoint, checkpoint_path)

# Close the log file
log_file.close()