File size: 5,892 Bytes
10b4a5f
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
358ab8f
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
 
 
 
10b4a5f
 
358ab8f
 
10b4a5f
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
10b4a5f
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import glob
import pickle
import numpy as np
import h5py
from .base_dumper import BaseDumper

import sys

ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../"))
sys.path.insert(0, ROOT_DIR)
import utils


class yfcc(BaseDumper):
    def get_seqs(self):
        data_dir = os.path.join(self.config["rawdata_dir"], "yfcc100m")
        for seq in self.config["data_seq"]:
            for split in self.config["data_split"]:
                split_dir = os.path.join(data_dir, seq, split)
                dump_dir = os.path.join(self.config["feature_dump_dir"], seq, split)
                cur_img_seq = glob.glob(os.path.join(split_dir, "images", "*.jpg"))
                cur_dump_seq = [
                    os.path.join(dump_dir, path.split("/")[-1])
                    + "_"
                    + self.config["extractor"]["name"]
                    + "_"
                    + str(self.config["extractor"]["num_kpt"])
                    + ".hdf5"
                    for path in cur_img_seq
                ]
                self.img_seq += cur_img_seq
                self.dump_seq += cur_dump_seq

    def format_dump_folder(self):
        if not os.path.exists(self.config["feature_dump_dir"]):
            os.mkdir(self.config["feature_dump_dir"])
        for seq in self.config["data_seq"]:
            seq_dir = os.path.join(self.config["feature_dump_dir"], seq)
            if not os.path.exists(seq_dir):
                os.mkdir(seq_dir)
            for split in self.config["data_split"]:
                split_dir = os.path.join(seq_dir, split)
                if not os.path.exists(split_dir):
                    os.mkdir(split_dir)

    def format_dump_data(self):
        print("Formatting data...")
        pair_path = os.path.join(self.config["rawdata_dir"], "pairs")
        self.data = {
            "K1": [],
            "K2": [],
            "R": [],
            "T": [],
            "e": [],
            "f": [],
            "fea_path1": [],
            "fea_path2": [],
            "img_path1": [],
            "img_path2": [],
        }

        for seq in self.config["data_seq"]:
            pair_name = os.path.join(pair_path, seq + "-te-1000-pairs.pkl")
            with open(pair_name, "rb") as f:
                pairs = pickle.load(f)

            # generate id list
            seq_dir = os.path.join(self.config["rawdata_dir"], "yfcc100m", seq, "test")
            name_list = np.loadtxt(os.path.join(seq_dir, "images.txt"), dtype=str)
            cam_name_list = np.loadtxt(
                os.path.join(seq_dir, "calibration.txt"), dtype=str
            )

            for cur_pair in pairs:
                index1, index2 = cur_pair[0], cur_pair[1]
                cam1, cam2 = h5py.File(
                    os.path.join(seq_dir, cam_name_list[index1]), "r"
                ), h5py.File(os.path.join(seq_dir, cam_name_list[index2]), "r")
                K1, K2 = cam1["K"][()], cam2["K"][()]
                [w1, h1], [w2, h2] = cam1["imsize"][()][0], cam2["imsize"][()][0]
                cx1, cy1, cx2, cy2 = (
                    (w1 - 1.0) * 0.5,
                    (h1 - 1.0) * 0.5,
                    (w2 - 1.0) * 0.5,
                    (h2 - 1.0) * 0.5,
                )
                K1[0, 2], K1[1, 2], K2[0, 2], K2[1, 2] = cx1, cy1, cx2, cy2

                R1, R2, t1, t2 = (
                    cam1["R"][()],
                    cam2["R"][()],
                    cam1["T"][()].reshape([3, 1]),
                    cam2["T"][()].reshape([3, 1]),
                )
                dR = np.dot(R2, R1.T)
                dt = t2 - np.dot(dR, t1)
                dt /= np.sqrt(np.sum(dt**2))

                e_gt_unnorm = np.reshape(
                    np.matmul(
                        np.reshape(
                            utils.evaluation_utils.np_skew_symmetric(
                                dt.astype("float64").reshape(1, 3)
                            ),
                            (3, 3),
                        ),
                        np.reshape(dR.astype("float64"), (3, 3)),
                    ),
                    (3, 3),
                )
                e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm)
                f_gt_unnorm = np.linalg.inv(K2.T) @ e_gt @ np.linalg.inv(K1)
                f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm)

                self.data["K1"].append(K1), self.data["K2"].append(K2)
                self.data["R"].append(dR), self.data["T"].append(dt)
                self.data["e"].append(e_gt), self.data["f"].append(f_gt)

                img_path1, img_path2 = os.path.join(
                    "yfcc100m", seq, "test", name_list[index1]
                ), os.path.join("yfcc100m", seq, "test", name_list[index2])
                dump_seq_dir = os.path.join(
                    self.config["feature_dump_dir"], seq, "test"
                )
                fea_path1, fea_path2 = os.path.join(
                    dump_seq_dir,
                    name_list[index1].split("/")[-1]
                    + "_"
                    + self.config["extractor"]["name"]
                    + "_"
                    + str(self.config["extractor"]["num_kpt"])
                    + ".hdf5",
                ), os.path.join(
                    dump_seq_dir,
                    name_list[index2].split("/")[-1]
                    + "_"
                    + self.config["extractor"]["name"]
                    + "_"
                    + str(self.config["extractor"]["num_kpt"])
                    + ".hdf5",
                )
                self.data["img_path1"].append(img_path1), self.data["img_path2"].append(
                    img_path2
                )
                self.data["fea_path1"].append(fea_path1), self.data["fea_path2"].append(
                    fea_path2
                )

        self.form_standard_dataset()