File size: 5,337 Bytes
aeca520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from os import path as osp
from typing import Dict
from unicodedata import name

import numpy as np
import torch
import torch.utils as utils
from numpy.linalg import inv
from src.utils.dataset import (
    read_scannet_gray,
    read_scannet_depth,
    read_scannet_pose,
    read_scannet_intrinsic
)


class ScanNetDataset(utils.data.Dataset):
    def __init__(self,
                 root_dir,
                 npz_path,
                 intrinsic_path,
                 mode='train',
                 min_overlap_score=0.4,
                 augment_fn=None,
                 pose_dir=None,
                 img_resize=None,
                 fp16=False,
                 **kwargs):
        """Manage one scene of ScanNet Dataset.
        Args:
            root_dir (str): ScanNet root directory that contains scene folders.
            npz_path (str): {scene_id}.npz path. This contains image pair information of a scene.
            intrinsic_path (str): path to depth-camera intrinsic file.
            mode (str): options are ['train', 'val', 'test'].
            augment_fn (callable, optional): augments images with pre-defined visual effects.
            pose_dir (str): ScanNet root directory that contains all poses.
                (we use a separate (optional) pose_dir since we store images and poses separately.)
        """
        super().__init__()
        self.root_dir = root_dir
        self.pose_dir = pose_dir if pose_dir is not None else root_dir
        self.mode = mode

        # prepare data_names, intrinsics and extrinsics(T)
        with np.load(npz_path) as data:
            self.data_names = data['name']
            if 'score' in data.keys() and mode not in ['val' or 'test']:
                kept_mask = data['score'] > min_overlap_score
                self.data_names = self.data_names[kept_mask]
        self.intrinsics = dict(np.load(intrinsic_path))

        # for training LoFTR
        self.augment_fn = augment_fn if mode == 'train' else None
        
        self.fp16 = fp16
        self.img_resize = img_resize

    def __len__(self):
        return len(self.data_names)

    def _read_abs_pose(self, scene_name, name):
        pth = osp.join(self.pose_dir,
                       scene_name,
                       'pose', f'{name}.txt')
        return read_scannet_pose(pth)

    def _compute_rel_pose(self, scene_name, name0, name1):
        pose0 = self._read_abs_pose(scene_name, name0)
        pose1 = self._read_abs_pose(scene_name, name1)
        
        return np.matmul(pose1, inv(pose0))  # (4, 4)

    def __getitem__(self, idx):
        data_name = self.data_names[idx]
        scene_name, scene_sub_name, stem_name_0, stem_name_1 = data_name
        scene_name = f'scene{scene_name:04d}_{scene_sub_name:02d}'

        # read the grayscale image which will be resized to (1, 480, 640)
        img_name0 = osp.join(self.root_dir, scene_name, 'color', f'{stem_name_0}.jpg')
        img_name1 = osp.join(self.root_dir, scene_name, 'color', f'{stem_name_1}.jpg')
        
        # TODO: Support augmentation & handle seeds for each worker correctly.
        image0 = read_scannet_gray(img_name0, resize=self.img_resize, augment_fn=None)
                                #    augment_fn=np.random.choice([self.augment_fn, None], p=[0.5, 0.5]))
        image1 = read_scannet_gray(img_name1, resize=self.img_resize, augment_fn=None)
                                #    augment_fn=np.random.choice([self.augment_fn, None], p=[0.5, 0.5]))

        # read the depthmap which is stored as (480, 640)
        if self.mode in ['train', 'val']:
            depth0 = read_scannet_depth(osp.join(self.root_dir, scene_name, 'depth', f'{stem_name_0}.png'))
            depth1 = read_scannet_depth(osp.join(self.root_dir, scene_name, 'depth', f'{stem_name_1}.png'))
        else:
            depth0 = depth1 = torch.tensor([])

        # read the intrinsic of depthmap
        K_0 = K_1 = torch.tensor(self.intrinsics[scene_name].copy(), dtype=torch.float).reshape(3, 3)

        # read and compute relative poses
        T_0to1 = torch.tensor(self._compute_rel_pose(scene_name, stem_name_0, stem_name_1),
                              dtype=torch.float32)
        T_1to0 = T_0to1.inverse()
        
        h_new, w_new = self.img_resize[1], self.img_resize[0]
        scale0 = torch.tensor([640/w_new, 480/h_new], dtype=torch.float)
        scale1 = torch.tensor([640/w_new, 480/h_new], dtype=torch.float)

        if self.fp16:
            image0, image1, depth0, depth1, scale0, scale1 = map(lambda x: x.half(),
                                                                 [image0, image1, depth0, depth1, scale0, scale1])

        data = {
            'image0': image0,   # (1, h, w)
            'depth0': depth0,   # (h, w)
            'image1': image1,
            'depth1': depth1,
            'T_0to1': T_0to1,   # (4, 4)
            'T_1to0': T_1to0,
            'K0': K_0,  # (3, 3)
            'K1': K_1,
            'scale0': scale0,  # [scale_w, scale_h]
            'scale1': scale1,
            'dataset_name': 'ScanNet',
            'scene_id': scene_name,
            'pair_id': idx,
            'pair_names': (osp.join(scene_name, 'color', f'{stem_name_0}.jpg'),
                           osp.join(scene_name, 'color', f'{stem_name_1}.jpg'))
        }

        return data