File size: 11,976 Bytes
aeca520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

from collections import defaultdict
import pprint
from loguru import logger
from pathlib import Path

import torch
import numpy as np
import pytorch_lightning as pl
from matplotlib import pyplot as plt

from src.loftr import LoFTR
# from src.loftr.utils.supervision import compute_supervision_coarse, compute_supervision_fine
# from src.losses.loftr_loss import LoFTRLoss
from src.optimizers import build_optimizer, build_scheduler
from src.utils.metrics import (
    compute_symmetrical_epipolar_errors,
    compute_pose_errors,
    aggregate_metrics
)
from src.utils.plotting import make_matching_figures
from src.utils.comm import gather, all_gather
from src.utils.misc import lower_config, flattenList
from src.utils.profiler import PassThroughProfiler

from torch.profiler import profile

def reparameter(matcher):
    module = matcher.backbone.layer0
    if hasattr(module, 'switch_to_deploy'):
        module.switch_to_deploy()
    for modules in [matcher.backbone.layer1, matcher.backbone.layer2, matcher.backbone.layer3]:
        for module in modules:
            if hasattr(module, 'switch_to_deploy'):
                module.switch_to_deploy()
    for modules in [matcher.fine_preprocess.layer2_outconv2, matcher.fine_preprocess.layer1_outconv2]:
        for module in modules:
            if hasattr(module, 'switch_to_deploy'):
                module.switch_to_deploy()
    return matcher


class PL_LoFTR(pl.LightningModule):
    def __init__(self, config, pretrained_ckpt=None, profiler=None, dump_dir=None):
        """
        TODO:
            - use the new version of PL logging API.
        """
        super().__init__()
        # Misc
        self.config = config  # full config
        _config = lower_config(self.config)
        self.loftr_cfg = lower_config(_config['loftr'])
        self.profiler = profiler or PassThroughProfiler()
        self.n_vals_plot = max(config.TRAINER.N_VAL_PAIRS_TO_PLOT // config.TRAINER.WORLD_SIZE, 1)

        # Matcher: LoFTR
        self.matcher = LoFTR(config=_config['loftr'], profiler=self.profiler)
        # self.loss = LoFTRLoss(_config)

        # Pretrained weights
        if pretrained_ckpt:
            state_dict = torch.load(pretrained_ckpt, map_location='cpu')['state_dict']
            msg=self.matcher.load_state_dict(state_dict, strict=False)
            logger.info(f"Load \'{pretrained_ckpt}\' as pretrained checkpoint")
        
        # Testing
        self.warmup = False
        self.reparameter = False
        self.start_event = torch.cuda.Event(enable_timing=True)
        self.end_event = torch.cuda.Event(enable_timing=True)
        self.total_ms = 0

    def configure_optimizers(self):
        # FIXME: The scheduler did not work properly when `--resume_from_checkpoint`
        optimizer = build_optimizer(self, self.config)
        scheduler = build_scheduler(self.config, optimizer)
        return [optimizer], [scheduler]
    
    def optimizer_step(
            self, epoch, batch_idx, optimizer, optimizer_idx,
            optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
        # learning rate warm up
        warmup_step = self.config.TRAINER.WARMUP_STEP
        if self.trainer.global_step < warmup_step:
            if self.config.TRAINER.WARMUP_TYPE == 'linear':
                base_lr = self.config.TRAINER.WARMUP_RATIO * self.config.TRAINER.TRUE_LR
                lr = base_lr + \
                    (self.trainer.global_step / self.config.TRAINER.WARMUP_STEP) * \
                    abs(self.config.TRAINER.TRUE_LR - base_lr)
                for pg in optimizer.param_groups:
                    pg['lr'] = lr
            elif self.config.TRAINER.WARMUP_TYPE == 'constant':
                pass
            else:
                raise ValueError(f'Unknown lr warm-up strategy: {self.config.TRAINER.WARMUP_TYPE}')

        # update params
        optimizer.step(closure=optimizer_closure)
        optimizer.zero_grad()
    
    def _trainval_inference(self, batch):
        with self.profiler.profile("Compute coarse supervision"):
            with torch.autocast(enabled=False, device_type='cuda'):
                compute_supervision_coarse(batch, self.config)
        
        with self.profiler.profile("LoFTR"):
            with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'):
                self.matcher(batch)
        
        with self.profiler.profile("Compute fine supervision"):
            with torch.autocast(enabled=False, device_type='cuda'):
                compute_supervision_fine(batch, self.config, self.logger)
            
        with self.profiler.profile("Compute losses"):
            with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'):
                self.loss(batch)
    
    def _compute_metrics(self, batch):
        compute_symmetrical_epipolar_errors(batch)  # compute epi_errs for each match
        compute_pose_errors(batch, self.config)  # compute R_errs, t_errs, pose_errs for each pair

        rel_pair_names = list(zip(*batch['pair_names']))
        bs = batch['image0'].size(0)
        metrics = {
            # to filter duplicate pairs caused by DistributedSampler
            'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)],
            'epi_errs': [(batch['epi_errs'].reshape(-1,1))[batch['m_bids'] == b].reshape(-1).cpu().numpy() for b in range(bs)],
            'R_errs': batch['R_errs'],
            't_errs': batch['t_errs'],
            'inliers': batch['inliers'],
            'num_matches': [batch['mconf'].shape[0]], # batch size = 1 only
            }
        ret_dict = {'metrics': metrics}
        return ret_dict, rel_pair_names
    
    def training_step(self, batch, batch_idx):
        self._trainval_inference(batch)
        
        # logging
        if self.trainer.global_rank == 0 and self.global_step % self.trainer.log_every_n_steps == 0:
            # scalars
            for k, v in batch['loss_scalars'].items():
                self.logger.experiment.add_scalar(f'train/{k}', v, self.global_step)

            # figures
            if self.config.TRAINER.ENABLE_PLOTTING:
                compute_symmetrical_epipolar_errors(batch)  # compute epi_errs for each match
                figures = make_matching_figures(batch, self.config, self.config.TRAINER.PLOT_MODE)
                for k, v in figures.items():
                    self.logger.experiment.add_figure(f'train_match/{k}', v, self.global_step)
        return {'loss': batch['loss']}

    def training_epoch_end(self, outputs):
        avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
        if self.trainer.global_rank == 0:
            self.logger.experiment.add_scalar(
                'train/avg_loss_on_epoch', avg_loss,
                global_step=self.current_epoch)
    
    def validation_step(self, batch, batch_idx):
        self._trainval_inference(batch)
        
        ret_dict, _ = self._compute_metrics(batch)
        
        val_plot_interval = max(self.trainer.num_val_batches[0] // self.n_vals_plot, 1)
        figures = {self.config.TRAINER.PLOT_MODE: []}
        if batch_idx % val_plot_interval == 0:
            figures = make_matching_figures(batch, self.config, mode=self.config.TRAINER.PLOT_MODE)

        return {
            **ret_dict,
            'loss_scalars': batch['loss_scalars'],
            'figures': figures,
        }
        
    def validation_epoch_end(self, outputs):
        # handle multiple validation sets
        multi_outputs = [outputs] if not isinstance(outputs[0], (list, tuple)) else outputs
        multi_val_metrics = defaultdict(list)
        
        for valset_idx, outputs in enumerate(multi_outputs):
            # since pl performs sanity_check at the very begining of the training
            cur_epoch = self.trainer.current_epoch
            if not self.trainer.resume_from_checkpoint and self.trainer.running_sanity_check:
                cur_epoch = -1

            # 1. loss_scalars: dict of list, on cpu
            _loss_scalars = [o['loss_scalars'] for o in outputs]
            loss_scalars = {k: flattenList(all_gather([_ls[k] for _ls in _loss_scalars])) for k in _loss_scalars[0]}

            # 2. val metrics: dict of list, numpy
            _metrics = [o['metrics'] for o in outputs]
            metrics = {k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]}
            # NOTE: all ranks need to `aggregate_merics`, but only log at rank-0 
            val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR, config=self.config)
            for thr in [5, 10, 20]:
                multi_val_metrics[f'auc@{thr}'].append(val_metrics_4tb[f'auc@{thr}'])
            
            # 3. figures
            _figures = [o['figures'] for o in outputs]
            figures = {k: flattenList(gather(flattenList([_me[k] for _me in _figures]))) for k in _figures[0]}

            # tensorboard records only on rank 0
            if self.trainer.global_rank == 0:
                for k, v in loss_scalars.items():
                    mean_v = torch.stack(v).mean()
                    self.logger.experiment.add_scalar(f'val_{valset_idx}/avg_{k}', mean_v, global_step=cur_epoch)

                for k, v in val_metrics_4tb.items():
                    self.logger.experiment.add_scalar(f"metrics_{valset_idx}/{k}", v, global_step=cur_epoch)
                
                for k, v in figures.items():
                    if self.trainer.global_rank == 0:
                        for plot_idx, fig in enumerate(v):
                            self.logger.experiment.add_figure(
                                f'val_match_{valset_idx}/{k}/pair-{plot_idx}', fig, cur_epoch, close=True)
            plt.close('all')

        for thr in [5, 10, 20]:
            # log on all ranks for ModelCheckpoint callback to work properly
            self.log(f'auc@{thr}', torch.tensor(np.mean(multi_val_metrics[f'auc@{thr}'])))  # ckpt monitors on this

    def test_step(self, batch, batch_idx):
        if (self.config.LOFTR.BACKBONE_TYPE == 'RepVGG') and not self.reparameter:
            self.matcher = reparameter(self.matcher)
            if self.config.LOFTR.HALF:
                self.matcher = self.matcher.eval().half()
            self.reparameter = True

        if not self.warmup:
            if self.config.LOFTR.HALF:
                for i in range(50):
                    self.matcher(batch)
            else:
                with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'):
                    for i in range(50):
                        self.matcher(batch)
            self.warmup = True
            torch.cuda.synchronize()

        if self.config.LOFTR.HALF:
            self.start_event.record()
            self.matcher(batch)
            self.end_event.record()
            torch.cuda.synchronize()
            self.total_ms += self.start_event.elapsed_time(self.end_event)
        else:
            with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'):
                self.start_event.record()
                self.matcher(batch)
                self.end_event.record()
                torch.cuda.synchronize()
                self.total_ms += self.start_event.elapsed_time(self.end_event)

        ret_dict, rel_pair_names = self._compute_metrics(batch)
        return ret_dict

    def test_epoch_end(self, outputs):
        # metrics: dict of list, numpy
        _metrics = [o['metrics'] for o in outputs]
        metrics = {k: flattenList(gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]}

        # [{key: [{...}, *#bs]}, *#batch]
        if self.trainer.global_rank == 0:
            print('Averaged Matching time over 1500 pairs: {:.2f} ms'.format(self.total_ms / 1500))
            val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR, config=self.config)
            logger.info('\n' + pprint.pformat(val_metrics_4tb))