File size: 9,230 Bytes
aeca520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.einops import rearrange, repeat

from loguru import logger
import numpy as np

INF = 1e9

def mask_border(m, b: int, v):
    """ Mask borders with value
    Args:
        m (torch.Tensor): [N, H0, W0, H1, W1]
        b (int)
        v (m.dtype)
    """
    if b <= 0:
        return

    m[:, :b] = v
    m[:, :, :b] = v
    m[:, :, :, :b] = v
    m[:, :, :, :, :b] = v
    m[:, -b:] = v
    m[:, :, -b:] = v
    m[:, :, :, -b:] = v
    m[:, :, :, :, -b:] = v


def mask_border_with_padding(m, bd, v, p_m0, p_m1):
    if bd <= 0:
        return

    m[:, :bd] = v
    m[:, :, :bd] = v
    m[:, :, :, :bd] = v
    m[:, :, :, :, :bd] = v

    h0s, w0s = p_m0.sum(1).max(-1)[0].int(), p_m0.sum(-1).max(-1)[0].int()
    h1s, w1s = p_m1.sum(1).max(-1)[0].int(), p_m1.sum(-1).max(-1)[0].int()
    for b_idx, (h0, w0, h1, w1) in enumerate(zip(h0s, w0s, h1s, w1s)):
        m[b_idx, h0 - bd:] = v
        m[b_idx, :, w0 - bd:] = v
        m[b_idx, :, :, h1 - bd:] = v
        m[b_idx, :, :, :, w1 - bd:] = v


def compute_max_candidates(p_m0, p_m1):
    """Compute the max candidates of all pairs within a batch
    
    Args:
        p_m0, p_m1 (torch.Tensor): padded masks
    """
    h0s, w0s = p_m0.sum(1).max(-1)[0], p_m0.sum(-1).max(-1)[0]
    h1s, w1s = p_m1.sum(1).max(-1)[0], p_m1.sum(-1).max(-1)[0]
    max_cand = torch.sum(
        torch.min(torch.stack([h0s * w0s, h1s * w1s], -1), -1)[0])
    return max_cand

class CoarseMatching(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        # general config
        self.thr = config['thr']
        self.border_rm = config['border_rm']
        self.temperature = config['dsmax_temperature']
        self.skip_softmax = config['skip_softmax']
        self.fp16matmul = config['fp16matmul']
        # -- # for trainig fine-level LoFTR
        self.train_coarse_percent = config['train_coarse_percent']
        self.train_pad_num_gt_min = config['train_pad_num_gt_min']

    def forward(self, feat_c0, feat_c1, data, mask_c0=None, mask_c1=None):
        """
        Args:
            feat0 (torch.Tensor): [N, L, C]
            feat1 (torch.Tensor): [N, S, C]
            data (dict)
            mask_c0 (torch.Tensor): [N, L] (optional)
            mask_c1 (torch.Tensor): [N, S] (optional)
        Update:
            data (dict): {
                'b_ids' (torch.Tensor): [M'],
                'i_ids' (torch.Tensor): [M'],
                'j_ids' (torch.Tensor): [M'],
                'm_bids' (torch.Tensor): [M],
                'mkpts0_c' (torch.Tensor): [M, 2],
                'mkpts1_c' (torch.Tensor): [M, 2],
                'mconf' (torch.Tensor): [M]}
            NOTE: M' != M during training.
        """
        N, L, S, C = feat_c0.size(0), feat_c0.size(1), feat_c1.size(1), feat_c0.size(2)

        # normalize
        feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5,
                               [feat_c0, feat_c1])

        if self.fp16matmul:
            sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0,
                                    feat_c1) / self.temperature
            del feat_c0, feat_c1
            if mask_c0 is not None:
                sim_matrix = sim_matrix.masked_fill(
                    ~(mask_c0[..., None] * mask_c1[:, None]).bool(),
                    -1e4
                    )
        else:
            with torch.autocast(enabled=False, device_type='cuda'):
                sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0,
                                        feat_c1) / self.temperature
                del feat_c0, feat_c1
                if mask_c0 is not None:
                    sim_matrix = sim_matrix.float().masked_fill(
                        ~(mask_c0[..., None] * mask_c1[:, None]).bool(),
                        -INF
                        )
        if self.skip_softmax:
            sim_matrix = sim_matrix
        else:
            sim_matrix = F.softmax(sim_matrix, 1) * F.softmax(sim_matrix, 2)

        data.update({'conf_matrix': sim_matrix})

        # predict coarse matches from conf_matrix
        data.update(**self.get_coarse_match(sim_matrix, data))

    @torch.no_grad()
    def get_coarse_match(self, conf_matrix, data):
        """
        Args:
            conf_matrix (torch.Tensor): [N, L, S]
            data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c']
        Returns:
            coarse_matches (dict): {
                'b_ids' (torch.Tensor): [M'],
                'i_ids' (torch.Tensor): [M'],
                'j_ids' (torch.Tensor): [M'],
                'm_bids' (torch.Tensor): [M],
                'mkpts0_c' (torch.Tensor): [M, 2],
                'mkpts1_c' (torch.Tensor): [M, 2],
                'mconf' (torch.Tensor): [M]}
        """
        axes_lengths = {
            'h0c': data['hw0_c'][0],
            'w0c': data['hw0_c'][1],
            'h1c': data['hw1_c'][0],
            'w1c': data['hw1_c'][1]
        }
        _device = conf_matrix.device
        # 1. confidence thresholding
        mask = conf_matrix > self.thr
        mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c',
                         **axes_lengths)

        if 'mask0' not in data:
            mask_border(mask, self.border_rm, False)
        else:
            mask_border_with_padding(mask, self.border_rm, False,
                                     data['mask0'], data['mask1'])
        mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)',
                         **axes_lengths)
            
        # 2. mutual nearest
        mask = mask \
            * (conf_matrix == conf_matrix.max(dim=2, keepdim=True)[0]) \
            * (conf_matrix == conf_matrix.max(dim=1, keepdim=True)[0])

        # 3. find all valid coarse matches
        # this only works when at most one `True` in each row
        mask_v, all_j_ids = mask.max(dim=2)
        b_ids, i_ids = torch.where(mask_v)
        j_ids = all_j_ids[b_ids, i_ids]
        mconf = conf_matrix[b_ids, i_ids, j_ids]

        # 4. Random sampling of training samples for fine-level LoFTR
        # (optional) pad samples with gt coarse-level matches
        if self.training:
            # NOTE:
            # The sampling is performed across all pairs in a batch without manually balancing
            # #samples for fine-level increases w.r.t. batch_size
            if 'mask0' not in data:
                num_candidates_max = mask.size(0) * max(
                    mask.size(1), mask.size(2))
            else:
                num_candidates_max = compute_max_candidates(
                    data['mask0'], data['mask1'])
            num_matches_train = int(num_candidates_max *
                                    self.train_coarse_percent)
            num_matches_pred = len(b_ids)
            assert self.train_pad_num_gt_min < num_matches_train, "min-num-gt-pad should be less than num-train-matches"

            # pred_indices is to select from prediction
            if num_matches_pred <= num_matches_train - self.train_pad_num_gt_min:
                pred_indices = torch.arange(num_matches_pred, device=_device)
            else:
                pred_indices = torch.randint(
                    num_matches_pred,
                    (num_matches_train - self.train_pad_num_gt_min, ),
                    device=_device)

            # gt_pad_indices is to select from gt padding. e.g. max(3787-4800, 200)
            gt_pad_indices = torch.randint(
                    len(data['spv_b_ids']),
                    (max(num_matches_train - num_matches_pred,
                        self.train_pad_num_gt_min), ),
                    device=_device)
            mconf_gt = torch.zeros(len(data['spv_b_ids']), device=_device)  # set conf of gt paddings to all zero

            b_ids, i_ids, j_ids, mconf = map(
                lambda x, y: torch.cat([x[pred_indices], y[gt_pad_indices]],
                                       dim=0),
                *zip([b_ids, data['spv_b_ids']], [i_ids, data['spv_i_ids']],
                     [j_ids, data['spv_j_ids']], [mconf, mconf_gt]))

        # These matches select patches that feed into fine-level network
        coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids}

        # 4. Update with matches in original image resolution
        scale = data['hw0_i'][0] / data['hw0_c'][0]

        scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale
        scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale
        mkpts0_c = torch.stack(
            [i_ids % data['hw0_c'][1], i_ids // data['hw0_c'][1]],
            dim=1) * scale0
        mkpts1_c = torch.stack(
            [j_ids % data['hw1_c'][1], j_ids // data['hw1_c'][1]],
            dim=1) * scale1

        m_bids = b_ids[mconf != 0]        
        # These matches is the current prediction (for visualization)
        coarse_matches.update({
            'm_bids': m_bids,  # mconf == 0 => gt matches
            'mkpts0_c': mkpts0_c[mconf != 0],
            'mkpts1_c': mkpts1_c[mconf != 0],
            'mconf': mconf[mconf != 0]
        })

        return coarse_matches