Spaces:
Running
Running
File size: 5,356 Bytes
c0283b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tvm
class ResNet18(nn.Module):
def __init__(self, pretrained=False) -> None:
super().__init__()
self.net = tvm.resnet18(pretrained=pretrained)
def forward(self, x):
self = self.net
x1 = x
x = self.conv1(x1)
x = self.bn1(x)
x2 = self.relu(x)
x = self.maxpool(x2)
x4 = self.layer1(x)
x8 = self.layer2(x4)
x16 = self.layer3(x8)
x32 = self.layer4(x16)
return {32:x32,16:x16,8:x8,4:x4,2:x2,1:x1}
def train(self, mode=True):
super().train(mode)
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass
class ResNet50(nn.Module):
def __init__(self, pretrained=False, high_res = False, weights = None, dilation = None, freeze_bn = True, anti_aliased = False) -> None:
super().__init__()
if dilation is None:
dilation = [False,False,False]
if anti_aliased:
pass
else:
if weights is not None:
self.net = tvm.resnet50(weights = weights,replace_stride_with_dilation=dilation)
else:
self.net = tvm.resnet50(pretrained=pretrained,replace_stride_with_dilation=dilation)
del self.net.fc
self.high_res = high_res
self.freeze_bn = freeze_bn
def forward(self, x):
net = self.net
feats = {1:x}
x = net.conv1(x)
x = net.bn1(x)
x = net.relu(x)
feats[2] = x
x = net.maxpool(x)
x = net.layer1(x)
feats[4] = x
x = net.layer2(x)
feats[8] = x
x = net.layer3(x)
feats[16] = x
x = net.layer4(x)
feats[32] = x
return feats
def train(self, mode=True):
super().train(mode)
if self.freeze_bn:
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass
class ResNet101(nn.Module):
def __init__(self, pretrained=False, high_res = False, weights = None) -> None:
super().__init__()
if weights is not None:
self.net = tvm.resnet101(weights = weights)
else:
self.net = tvm.resnet101(pretrained=pretrained)
self.high_res = high_res
self.scale_factor = 1 if not high_res else 1.5
def forward(self, x):
net = self.net
feats = {1:x}
sf = self.scale_factor
if self.high_res:
x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic")
x = net.conv1(x)
x = net.bn1(x)
x = net.relu(x)
feats[2] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.maxpool(x)
x = net.layer1(x)
feats[4] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer2(x)
feats[8] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer3(x)
feats[16] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer4(x)
feats[32] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
return feats
def train(self, mode=True):
super().train(mode)
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass
class WideResNet50(nn.Module):
def __init__(self, pretrained=False, high_res = False, weights = None) -> None:
super().__init__()
if weights is not None:
self.net = tvm.wide_resnet50_2(weights = weights)
else:
self.net = tvm.wide_resnet50_2(pretrained=pretrained)
self.high_res = high_res
self.scale_factor = 1 if not high_res else 1.5
def forward(self, x):
net = self.net
feats = {1:x}
sf = self.scale_factor
if self.high_res:
x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic")
x = net.conv1(x)
x = net.bn1(x)
x = net.relu(x)
feats[2] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.maxpool(x)
x = net.layer1(x)
feats[4] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer2(x)
feats[8] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer3(x)
feats[16] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer4(x)
feats[32] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
return feats
def train(self, mode=True):
super().train(mode)
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass |