File size: 20,450 Bytes
c0283b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
import numpy as np
import torch
from scipy.optimize import linear_sum_assignment

from .depth import project, sample_depth
from .epipolar import T_to_E, sym_epipolar_distance_all
from .homography import warp_points_torch

IGNORE_FEATURE = -2
UNMATCHED_FEATURE = -1


@torch.no_grad()
def gt_matches_from_pose_depth(
    kp0, kp1, data, pos_th=3, neg_th=5, epi_th=None, cc_th=None, **kw
):
    if kp0.shape[1] == 0 or kp1.shape[1] == 0:
        b_size, n_kp0 = kp0.shape[:2]
        n_kp1 = kp1.shape[1]
        assignment = torch.zeros(
            b_size, n_kp0, n_kp1, dtype=torch.bool, device=kp0.device
        )
        m0 = -torch.ones_like(kp0[:, :, 0]).long()
        m1 = -torch.ones_like(kp1[:, :, 0]).long()
        return assignment, m0, m1
    camera0, camera1 = data["view0"]["camera"], data["view1"]["camera"]
    T_0to1, T_1to0 = data["T_0to1"], data["T_1to0"]

    depth0 = data["view0"].get("depth")
    depth1 = data["view1"].get("depth")
    if "depth_keypoints0" in kw and "depth_keypoints1" in kw:
        d0, valid0 = kw["depth_keypoints0"], kw["valid_depth_keypoints0"]
        d1, valid1 = kw["depth_keypoints1"], kw["valid_depth_keypoints1"]
    else:
        assert depth0 is not None
        assert depth1 is not None
        d0, valid0 = sample_depth(kp0, depth0)
        d1, valid1 = sample_depth(kp1, depth1)

    kp0_1, visible0 = project(
        kp0, d0, depth1, camera0, camera1, T_0to1, valid0, ccth=cc_th
    )
    kp1_0, visible1 = project(
        kp1, d1, depth0, camera1, camera0, T_1to0, valid1, ccth=cc_th
    )
    mask_visible = visible0.unsqueeze(-1) & visible1.unsqueeze(-2)

    # build a distance matrix of size [... x M x N]
    dist0 = torch.sum((kp0_1.unsqueeze(-2) - kp1.unsqueeze(-3)) ** 2, -1)
    dist1 = torch.sum((kp0.unsqueeze(-2) - kp1_0.unsqueeze(-3)) ** 2, -1)
    dist = torch.max(dist0, dist1)
    inf = dist.new_tensor(float("inf"))
    dist = torch.where(mask_visible, dist, inf)

    min0 = dist.min(-1).indices
    min1 = dist.min(-2).indices

    ismin0 = torch.zeros(dist.shape, dtype=torch.bool, device=dist.device)
    ismin1 = ismin0.clone()
    ismin0.scatter_(-1, min0.unsqueeze(-1), value=1)
    ismin1.scatter_(-2, min1.unsqueeze(-2), value=1)
    positive = ismin0 & ismin1 & (dist < pos_th**2)

    negative0 = (dist0.min(-1).values > neg_th**2) & valid0
    negative1 = (dist1.min(-2).values > neg_th**2) & valid1

    # pack the indices of positive matches
    # if -1: unmatched point
    # if -2: ignore point
    unmatched = min0.new_tensor(UNMATCHED_FEATURE)
    ignore = min0.new_tensor(IGNORE_FEATURE)
    m0 = torch.where(positive.any(-1), min0, ignore)
    m1 = torch.where(positive.any(-2), min1, ignore)
    m0 = torch.where(negative0, unmatched, m0)
    m1 = torch.where(negative1, unmatched, m1)

    F = (
        camera1.calibration_matrix().inverse().transpose(-1, -2)
        @ T_to_E(T_0to1)
        @ camera0.calibration_matrix().inverse()
    )
    epi_dist = sym_epipolar_distance_all(kp0, kp1, F)

    # Add some more unmatched points using epipolar geometry
    if epi_th is not None:
        mask_ignore = (m0.unsqueeze(-1) == ignore) & (m1.unsqueeze(-2) == ignore)
        epi_dist = torch.where(mask_ignore, epi_dist, inf)
        exclude0 = epi_dist.min(-1).values > neg_th
        exclude1 = epi_dist.min(-2).values > neg_th
        m0 = torch.where((~valid0) & exclude0, ignore.new_tensor(-1), m0)
        m1 = torch.where((~valid1) & exclude1, ignore.new_tensor(-1), m1)

    return {
        "assignment": positive,
        "reward": (dist < pos_th**2).float() - (epi_dist > neg_th).float(),
        "matches0": m0,
        "matches1": m1,
        "matching_scores0": (m0 > -1).float(),
        "matching_scores1": (m1 > -1).float(),
        "depth_keypoints0": d0,
        "depth_keypoints1": d1,
        "proj_0to1": kp0_1,
        "proj_1to0": kp1_0,
        "visible0": visible0,
        "visible1": visible1,
    }


@torch.no_grad()
def gt_matches_from_homography(kp0, kp1, H, pos_th=3, neg_th=6, **kw):
    if kp0.shape[1] == 0 or kp1.shape[1] == 0:
        b_size, n_kp0 = kp0.shape[:2]
        n_kp1 = kp1.shape[1]
        assignment = torch.zeros(
            b_size, n_kp0, n_kp1, dtype=torch.bool, device=kp0.device
        )
        m0 = -torch.ones_like(kp0[:, :, 0]).long()
        m1 = -torch.ones_like(kp1[:, :, 0]).long()
        return assignment, m0, m1
    kp0_1 = warp_points_torch(kp0, H, inverse=False)
    kp1_0 = warp_points_torch(kp1, H, inverse=True)

    # build a distance matrix of size [... x M x N]
    dist0 = torch.sum((kp0_1.unsqueeze(-2) - kp1.unsqueeze(-3)) ** 2, -1)
    dist1 = torch.sum((kp0.unsqueeze(-2) - kp1_0.unsqueeze(-3)) ** 2, -1)
    dist = torch.max(dist0, dist1)

    reward = (dist < pos_th**2).float() - (dist > neg_th**2).float()

    min0 = dist.min(-1).indices
    min1 = dist.min(-2).indices

    ismin0 = torch.zeros(dist.shape, dtype=torch.bool, device=dist.device)
    ismin1 = ismin0.clone()
    ismin0.scatter_(-1, min0.unsqueeze(-1), value=1)
    ismin1.scatter_(-2, min1.unsqueeze(-2), value=1)
    positive = ismin0 & ismin1 & (dist < pos_th**2)

    negative0 = dist0.min(-1).values > neg_th**2
    negative1 = dist1.min(-2).values > neg_th**2

    # pack the indices of positive matches
    # if -1: unmatched point
    # if -2: ignore point
    unmatched = min0.new_tensor(UNMATCHED_FEATURE)
    ignore = min0.new_tensor(IGNORE_FEATURE)
    m0 = torch.where(positive.any(-1), min0, ignore)
    m1 = torch.where(positive.any(-2), min1, ignore)
    m0 = torch.where(negative0, unmatched, m0)
    m1 = torch.where(negative1, unmatched, m1)

    return {
        "assignment": positive,
        "reward": reward,
        "matches0": m0,
        "matches1": m1,
        "matching_scores0": (m0 > -1).float(),
        "matching_scores1": (m1 > -1).float(),
        "proj_0to1": kp0_1,
        "proj_1to0": kp1_0,
    }


def sample_pts(lines, npts):
    dir_vec = (lines[..., 2:4] - lines[..., :2]) / (npts - 1)
    pts = lines[..., :2, np.newaxis] + dir_vec[..., np.newaxis].expand(
        dir_vec.shape + (npts,)
    ) * torch.arange(npts).to(lines)
    pts = torch.transpose(pts, -1, -2)
    return pts


def torch_perp_dist(segs2d, points_2d):
    # Check batch size and segments format
    assert segs2d.shape[0] == points_2d.shape[0]
    assert segs2d.shape[-1] == 4
    dir = segs2d[..., 2:] - segs2d[..., :2]
    sizes = torch.norm(dir, dim=-1).half()
    norm_dir = dir / torch.unsqueeze(sizes, dim=-1)
    # middle_ptn = 0.5 * (segs2d[..., 2:] + segs2d[..., :2])
    # centered [batch, nsegs0, nsegs1, n_sampled_pts, 2]
    centered = points_2d[:, None] - segs2d[..., None, None, 2:]

    R = torch.cat(
        [
            norm_dir[..., 0, None],
            norm_dir[..., 1, None],
            -norm_dir[..., 1, None],
            norm_dir[..., 0, None],
        ],
        dim=2,
    ).reshape((len(segs2d), -1, 2, 2))
    # Try to reduce the memory consumption by using float16 type
    if centered.is_cuda:
        centered, R = centered.half(), R.half()
    # R: [batch, nsegs0, 2, 2] , centered: [batch, nsegs1, n_sampled_pts, 2]
    #    -> [batch, nsegs0, nsegs1, n_sampled_pts, 2]
    rotated = torch.einsum("bdji,bdepi->bdepj", R, centered)

    overlaping = (rotated[..., 0] <= 0) & (
        torch.abs(rotated[..., 0]) <= sizes[..., None, None]
    )

    return torch.abs(rotated[..., 1]), overlaping


@torch.no_grad()
def gt_line_matches_from_pose_depth(
    pred_lines0,
    pred_lines1,
    valid_lines0,
    valid_lines1,
    data,
    npts=50,
    dist_th=5,
    overlap_th=0.2,
    min_visibility_th=0.5,
):
    """Compute ground truth line matches and label the remaining the lines as:
    - UNMATCHED: if reprojection is outside the image
                 or far away from any other line.
    - IGNORE: if a line has not enough valid depth pixels along itself
              or it is labeled as invalid."""
    lines0 = pred_lines0.clone()
    lines1 = pred_lines1.clone()

    if pred_lines0.shape[1] == 0 or pred_lines1.shape[1] == 0:
        bsize, nlines0, nlines1 = (
            pred_lines0.shape[0],
            pred_lines0.shape[1],
            pred_lines1.shape[1],
        )
        positive = torch.zeros(
            (bsize, nlines0, nlines1), dtype=torch.bool, device=pred_lines0.device
        )
        m0 = torch.full((bsize, nlines0), -1, device=pred_lines0.device)
        m1 = torch.full((bsize, nlines1), -1, device=pred_lines0.device)
        return positive, m0, m1

    if lines0.shape[-2:] == (2, 2):
        lines0 = torch.flatten(lines0, -2)
    elif lines0.dim() == 4:
        lines0 = torch.cat([lines0[:, :, 0], lines0[:, :, -1]], dim=2)
    if lines1.shape[-2:] == (2, 2):
        lines1 = torch.flatten(lines1, -2)
    elif lines1.dim() == 4:
        lines1 = torch.cat([lines1[:, :, 0], lines1[:, :, -1]], dim=2)
    b_size, n_lines0, _ = lines0.shape
    b_size, n_lines1, _ = lines1.shape
    h0, w0 = data["view0"]["depth"][0].shape
    h1, w1 = data["view1"]["depth"][0].shape

    lines0 = torch.min(
        torch.max(lines0, torch.zeros_like(lines0)),
        lines0.new_tensor([w0 - 1, h0 - 1, w0 - 1, h0 - 1], dtype=torch.float),
    )
    lines1 = torch.min(
        torch.max(lines1, torch.zeros_like(lines1)),
        lines1.new_tensor([w1 - 1, h1 - 1, w1 - 1, h1 - 1], dtype=torch.float),
    )

    # Sample points along each line
    pts0 = sample_pts(lines0, npts).reshape(b_size, n_lines0 * npts, 2)
    pts1 = sample_pts(lines1, npts).reshape(b_size, n_lines1 * npts, 2)

    # Sample depth and valid points
    d0, valid0_pts0 = sample_depth(pts0, data["view0"]["depth"])
    d1, valid1_pts1 = sample_depth(pts1, data["view1"]["depth"])

    # Reproject to the other view
    pts0_1, visible0 = project(
        pts0,
        d0,
        data["view1"]["depth"],
        data["view0"]["camera"],
        data["view1"]["camera"],
        data["T_0to1"],
        valid0_pts0,
    )
    pts1_0, visible1 = project(
        pts1,
        d1,
        data["view0"]["depth"],
        data["view1"]["camera"],
        data["view0"]["camera"],
        data["T_1to0"],
        valid1_pts1,
    )

    h0, w0 = data["view0"]["image"].shape[-2:]
    h1, w1 = data["view1"]["image"].shape[-2:]
    # If a line has less than min_visibility_th inside the image is considered OUTSIDE
    pts_out_of0 = (pts1_0 < 0).any(-1) | (
        pts1_0 >= torch.tensor([w0, h0]).to(pts1_0)
    ).any(-1)
    pts_out_of0 = pts_out_of0.reshape(b_size, n_lines1, npts).float()
    out_of0 = pts_out_of0.mean(dim=-1) >= (1 - min_visibility_th)
    pts_out_of1 = (pts0_1 < 0).any(-1) | (
        pts0_1 >= torch.tensor([w1, h1]).to(pts0_1)
    ).any(-1)
    pts_out_of1 = pts_out_of1.reshape(b_size, n_lines0, npts).float()
    out_of1 = pts_out_of1.mean(dim=-1) >= (1 - min_visibility_th)

    # visible0 is [bs, nl0 * npts]
    pts0_1 = pts0_1.reshape(b_size, n_lines0, npts, 2)
    pts1_0 = pts1_0.reshape(b_size, n_lines1, npts, 2)

    perp_dists0, overlaping0 = torch_perp_dist(lines0, pts1_0)
    close_points0 = (perp_dists0 < dist_th) & overlaping0  # [bs, nl0, nl1, npts]
    del perp_dists0, overlaping0
    close_points0 = close_points0 * visible1.reshape(b_size, 1, n_lines1, npts)

    perp_dists1, overlaping1 = torch_perp_dist(lines1, pts0_1)
    close_points1 = (perp_dists1 < dist_th) & overlaping1  # [bs, nl1, nl0, npts]
    del perp_dists1, overlaping1
    close_points1 = close_points1 * visible0.reshape(b_size, 1, n_lines0, npts)
    torch.cuda.empty_cache()

    # For each segment detected in 0, how many sampled points from
    # reprojected segments 1 are close
    num_close_pts0 = close_points0.sum(dim=-1)  # [bs, nl0, nl1]

    # num_close_pts0_t = num_close_pts0.transpose(-1, -2)
    # For each segment detected in 1, how many sampled points from
    # reprojected segments 0 are close
    num_close_pts1 = close_points1.sum(dim=-1)
    num_close_pts1_t = num_close_pts1.transpose(-1, -2)  # [bs, nl1, nl0]
    num_close_pts = num_close_pts0 * num_close_pts1_t
    mask_close = (
        num_close_pts1_t
        > visible0.reshape(b_size, n_lines0, npts).float().sum(-1)[:, :, None]
        * overlap_th
    ) & (
        num_close_pts0
        > visible1.reshape(b_size, n_lines1, npts).float().sum(-1)[:, None] * overlap_th
    )
    # mask_close = (num_close_pts1_t > npts * overlap_th) & (
    # num_close_pts0 > npts * overlap_th)

    # Define the unmatched lines
    unmatched0 = torch.all(~mask_close, dim=2) | out_of1
    unmatched1 = torch.all(~mask_close, dim=1) | out_of0

    # Define the lines to ignore
    ignore0 = (
        valid0_pts0.reshape(b_size, n_lines0, npts).float().mean(dim=-1)
        < min_visibility_th
    ) | ~valid_lines0
    ignore1 = (
        valid1_pts1.reshape(b_size, n_lines1, npts).float().mean(dim=-1)
        < min_visibility_th
    ) | ~valid_lines1

    cost = -num_close_pts.clone()
    # High score for unmatched and non-valid lines
    cost[unmatched0] = 1e6
    cost[ignore0] = 1e6
    # TODO: Is it reasonable to forbid the matching with a segment because it
    #  has not GT depth?
    cost = cost.transpose(1, 2)
    cost[unmatched1] = 1e6
    cost[ignore1] = 1e6
    cost = cost.transpose(1, 2)

    # For each row, returns the col of max number of points
    assignation = np.array(
        [linear_sum_assignment(C) for C in cost.detach().cpu().numpy()]
    )
    assignation = torch.tensor(assignation).to(num_close_pts)
    # Set ignore and unmatched labels
    unmatched = assignation.new_tensor(UNMATCHED_FEATURE)
    ignore = assignation.new_tensor(IGNORE_FEATURE)

    positive = num_close_pts.new_zeros(num_close_pts.shape, dtype=torch.bool)
    all_in_batch = (
        torch.arange(b_size)[:, None].repeat(1, assignation.shape[-1]).flatten()
    )
    positive[
        all_in_batch, assignation[:, 0].flatten(), assignation[:, 1].flatten()
    ] = True

    m0 = assignation.new_full((b_size, n_lines0), unmatched, dtype=torch.long)
    m0.scatter_(-1, assignation[:, 0], assignation[:, 1])
    m1 = assignation.new_full((b_size, n_lines1), unmatched, dtype=torch.long)
    m1.scatter_(-1, assignation[:, 1], assignation[:, 0])

    positive = positive & mask_close
    # Remove values to be ignored or unmatched
    positive[unmatched0] = False
    positive[ignore0] = False
    positive = positive.transpose(1, 2)
    positive[unmatched1] = False
    positive[ignore1] = False
    positive = positive.transpose(1, 2)
    m0[~positive.any(-1)] = unmatched
    m0[unmatched0] = unmatched
    m0[ignore0] = ignore
    m1[~positive.any(-2)] = unmatched
    m1[unmatched1] = unmatched
    m1[ignore1] = ignore

    if num_close_pts.numel() == 0:
        no_matches = torch.zeros(positive.shape[0], 0).to(positive)
        return positive, no_matches, no_matches

    return positive, m0, m1


@torch.no_grad()
def gt_line_matches_from_homography(
    pred_lines0,
    pred_lines1,
    valid_lines0,
    valid_lines1,
    shape0,
    shape1,
    H,
    npts=50,
    dist_th=5,
    overlap_th=0.2,
    min_visibility_th=0.2,
):
    """Compute ground truth line matches and label the remaining the lines as:
    - UNMATCHED: if reprojection is outside the image or far away from any other line.
    - IGNORE: if a line is labeled as invalid."""
    h0, w0 = shape0[-2:]
    h1, w1 = shape1[-2:]
    lines0 = pred_lines0.clone()
    lines1 = pred_lines1.clone()
    if lines0.shape[-2:] == (2, 2):
        lines0 = torch.flatten(lines0, -2)
    elif lines0.dim() == 4:
        lines0 = torch.cat([lines0[:, :, 0], lines0[:, :, -1]], dim=2)
    if lines1.shape[-2:] == (2, 2):
        lines1 = torch.flatten(lines1, -2)
    elif lines1.dim() == 4:
        lines1 = torch.cat([lines1[:, :, 0], lines1[:, :, -1]], dim=2)
    b_size, n_lines0, _ = lines0.shape
    b_size, n_lines1, _ = lines1.shape

    lines0 = torch.min(
        torch.max(lines0, torch.zeros_like(lines0)),
        lines0.new_tensor([w0 - 1, h0 - 1, w0 - 1, h0 - 1], dtype=torch.float),
    )
    lines1 = torch.min(
        torch.max(lines1, torch.zeros_like(lines1)),
        lines1.new_tensor([w1 - 1, h1 - 1, w1 - 1, h1 - 1], dtype=torch.float),
    )

    # Sample points along each line
    pts0 = sample_pts(lines0, npts).reshape(b_size, n_lines0 * npts, 2)
    pts1 = sample_pts(lines1, npts).reshape(b_size, n_lines1 * npts, 2)

    # Project the points to the other image
    pts0_1 = warp_points_torch(pts0, H, inverse=False)
    pts1_0 = warp_points_torch(pts1, H, inverse=True)
    pts0_1 = pts0_1.reshape(b_size, n_lines0, npts, 2)
    pts1_0 = pts1_0.reshape(b_size, n_lines1, npts, 2)

    # If a line has less than min_visibility_th inside the image is considered OUTSIDE
    pts_out_of0 = (pts1_0 < 0).any(-1) | (
        pts1_0 >= torch.tensor([w0, h0]).to(pts1_0)
    ).any(-1)
    pts_out_of0 = pts_out_of0.reshape(b_size, n_lines1, npts).float()
    out_of0 = pts_out_of0.mean(dim=-1) >= (1 - min_visibility_th)
    pts_out_of1 = (pts0_1 < 0).any(-1) | (
        pts0_1 >= torch.tensor([w1, h1]).to(pts0_1)
    ).any(-1)
    pts_out_of1 = pts_out_of1.reshape(b_size, n_lines0, npts).float()
    out_of1 = pts_out_of1.mean(dim=-1) >= (1 - min_visibility_th)

    perp_dists0, overlaping0 = torch_perp_dist(lines0, pts1_0)
    close_points0 = (perp_dists0 < dist_th) & overlaping0  # [bs, nl0, nl1, npts]
    del perp_dists0, overlaping0

    perp_dists1, overlaping1 = torch_perp_dist(lines1, pts0_1)
    close_points1 = (perp_dists1 < dist_th) & overlaping1  # [bs, nl1, nl0, npts]
    del perp_dists1, overlaping1
    torch.cuda.empty_cache()

    # For each segment detected in 0,
    # how many sampled points from reprojected segments 1 are close
    num_close_pts0 = close_points0.sum(dim=-1)  # [bs, nl0, nl1]
    # num_close_pts0_t = num_close_pts0.transpose(-1, -2)
    # For each segment detected in 1,
    # how many sampled points from reprojected segments 0 are close
    num_close_pts1 = close_points1.sum(dim=-1)
    num_close_pts1_t = num_close_pts1.transpose(-1, -2)  # [bs, nl1, nl0]

    num_close_pts = num_close_pts0 * num_close_pts1_t
    mask_close = (
        (num_close_pts1_t > npts * overlap_th)
        & (num_close_pts0 > npts * overlap_th)
        & ~out_of0.unsqueeze(1)
        & ~out_of1.unsqueeze(-1)
    )

    # Define the unmatched lines
    unmatched0 = torch.all(~mask_close, dim=2) | out_of1
    unmatched1 = torch.all(~mask_close, dim=1) | out_of0

    # Define the lines to ignore
    ignore0 = ~valid_lines0
    ignore1 = ~valid_lines1

    cost = -num_close_pts.clone()
    # High score for unmatched and non-valid lines
    cost[unmatched0] = 1e6
    cost[ignore0] = 1e6
    cost = cost.transpose(1, 2)
    cost[unmatched1] = 1e6
    cost[ignore1] = 1e6
    cost = cost.transpose(1, 2)
    # For each row, returns the col of max number of points
    assignation = np.array(
        [linear_sum_assignment(C) for C in cost.detach().cpu().numpy()]
    )
    assignation = torch.tensor(assignation).to(num_close_pts)

    # Set unmatched labels
    unmatched = assignation.new_tensor(UNMATCHED_FEATURE)
    ignore = assignation.new_tensor(IGNORE_FEATURE)

    positive = num_close_pts.new_zeros(num_close_pts.shape, dtype=torch.bool)
    # TODO Do with a single and beautiful call
    # for b in range(b_size):
    #     positive[b][assignation[b, 0], assignation[b, 1]] = True
    positive[
        torch.arange(b_size)[:, None].repeat(1, assignation.shape[-1]).flatten(),
        assignation[:, 0].flatten(),
        assignation[:, 1].flatten(),
    ] = True

    m0 = assignation.new_full((b_size, n_lines0), unmatched, dtype=torch.long)
    m0.scatter_(-1, assignation[:, 0], assignation[:, 1])
    m1 = assignation.new_full((b_size, n_lines1), unmatched, dtype=torch.long)
    m1.scatter_(-1, assignation[:, 1], assignation[:, 0])

    positive = positive & mask_close
    # Remove values to be ignored or unmatched
    positive[unmatched0] = False
    positive[ignore0] = False
    positive = positive.transpose(1, 2)
    positive[unmatched1] = False
    positive[ignore1] = False
    positive = positive.transpose(1, 2)
    m0[~positive.any(-1)] = unmatched
    m0[unmatched0] = unmatched
    m0[ignore0] = ignore
    m1[~positive.any(-2)] = unmatched
    m1[unmatched1] = unmatched
    m1[ignore1] = ignore

    if num_close_pts.numel() == 0:
        no_matches = torch.zeros(positive.shape[0], 0).to(positive)
        return positive, no_matches, no_matches

    return positive, m0, m1