Spaces:
Running
Running
File size: 4,666 Bytes
10b4a5f 7fd30f8 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# Copyright 2020 Toyota Research Institute. All rights reserved.
# Adapted from: https://github.com/rpautrat/SuperPoint/blob/master/superpoint/evaluations/detector_evaluation.py
import random
from glob import glob
from os import path as osp
import cv2
import numpy as np
from ..lanet_utils import warp_keypoints
def compute_repeatability(data, keep_k_points=300, distance_thresh=3):
"""
Compute the repeatability metric between 2 sets of keypoints inside data.
Parameters
----------
data: dict
Input dictionary containing:
image_shape: tuple (H,W)
Original image shape.
homography: numpy.ndarray (3,3)
Ground truth homography.
prob: numpy.ndarray (N,3)
Keypoint vector, consisting of (x,y,probability).
warped_prob: numpy.ndarray (N,3)
Warped keypoint vector, consisting of (x,y,probability).
keep_k_points: int
Number of keypoints to select, based on probability.
distance_thresh: int
Distance threshold in pixels for a corresponding keypoint to be considered a correct match.
Returns
-------
N1: int
Number of true keypoints in the first image.
N2: int
Number of true keypoints in the second image.
repeatability: float
Keypoint repeatability metric.
loc_err: float
Keypoint localization error.
"""
def filter_keypoints(points, shape):
"""Keep only the points whose coordinates are inside the dimensions of shape."""
mask = (
(points[:, 0] >= 0)
& (points[:, 0] < shape[0])
& (points[:, 1] >= 0)
& (points[:, 1] < shape[1])
)
return points[mask, :]
def keep_true_keypoints(points, H, shape):
"""Keep only the points whose warped coordinates by H are still inside shape."""
warped_points = warp_keypoints(points[:, [1, 0]], H)
warped_points[:, [0, 1]] = warped_points[:, [1, 0]]
mask = (
(warped_points[:, 0] >= 0)
& (warped_points[:, 0] < shape[0])
& (warped_points[:, 1] >= 0)
& (warped_points[:, 1] < shape[1])
)
return points[mask, :]
def select_k_best(points, k):
"""Select the k most probable points (and strip their probability).
points has shape (num_points, 3) where the last coordinate is the probability."""
sorted_prob = points[points[:, 2].argsort(), :2]
start = min(k, points.shape[0])
return sorted_prob[-start:, :]
H = data["homography"]
shape = data["image_shape"]
# # Filter out predictions
keypoints = data["prob"][:, :2].T
keypoints = keypoints[::-1]
prob = data["prob"][:, 2]
warped_keypoints = data["warped_prob"][:, :2].T
warped_keypoints = warped_keypoints[::-1]
warped_prob = data["warped_prob"][:, 2]
keypoints = np.stack([keypoints[0], keypoints[1]], axis=-1)
warped_keypoints = np.stack(
[warped_keypoints[0], warped_keypoints[1], warped_prob], axis=-1
)
warped_keypoints = keep_true_keypoints(warped_keypoints, np.linalg.inv(H), shape)
# Warp the original keypoints with the true homography
true_warped_keypoints = warp_keypoints(keypoints[:, [1, 0]], H)
true_warped_keypoints = np.stack(
[true_warped_keypoints[:, 1], true_warped_keypoints[:, 0], prob], axis=-1
)
true_warped_keypoints = filter_keypoints(true_warped_keypoints, shape)
# Keep only the keep_k_points best predictions
warped_keypoints = select_k_best(warped_keypoints, keep_k_points)
true_warped_keypoints = select_k_best(true_warped_keypoints, keep_k_points)
# Compute the repeatability
N1 = true_warped_keypoints.shape[0]
N2 = warped_keypoints.shape[0]
true_warped_keypoints = np.expand_dims(true_warped_keypoints, 1)
warped_keypoints = np.expand_dims(warped_keypoints, 0)
# shapes are broadcasted to N1 x N2 x 2:
norm = np.linalg.norm(true_warped_keypoints - warped_keypoints, ord=None, axis=2)
count1 = 0
count2 = 0
le1 = 0
le2 = 0
if N2 != 0:
min1 = np.min(norm, axis=1)
correct1 = min1 <= distance_thresh
count1 = np.sum(correct1)
le1 = min1[correct1].sum()
if N1 != 0:
min2 = np.min(norm, axis=0)
correct2 = min2 <= distance_thresh
count2 = np.sum(correct2)
le2 = min2[correct2].sum()
if N1 + N2 > 0:
repeatability = (count1 + count2) / (N1 + N2)
loc_err = (le1 + le2) / (count1 + count2)
else:
repeatability = -1
loc_err = -1
return N1, N2, repeatability, loc_err
|