Spaces:
Running
Running
File size: 3,365 Bytes
10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import cv2
import numpy as np
import math
# from skimage.metrics import structural_similarity as ssim
from skimage.measure import compare_ssim
from scipy.misc import imread
from glob import glob
import argparse
parser = argparse.ArgumentParser(description="evaluation codes")
parser.add_argument("--path", type=str, help="Path to evaluate images.")
args = parser.parse_args()
def psnr(img1, img2):
mse = np.mean((img1 / 255.0 - img2 / 255.0) ** 2)
if mse < 1.0e-10:
return 100
PIXEL_MAX = 1
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
def psnr_raw(img1, img2):
mse = np.mean((img1 - img2) ** 2)
if mse < 1.0e-10:
return 100
PIXEL_MAX = 1
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
def my_ssim(img1, img2):
return compare_ssim(
img1, img2, data_range=img1.max() - img1.min(), multichannel=True
)
def quan_eval(path, suffix="jpg"):
# path: /disk2/yazhou/projects/IISP/exps/test_final_unet_globalEDV2/
# ours
gt_imgs = sorted(glob(path + "tar*.%s" % suffix))
pred_imgs = sorted(glob(path + "pred*.%s" % suffix))
# with open(split_path + "test_gt.txt", 'r') as f_gt, open(split_path+"test_rgb.txt","r") as f_rgb:
# gt_imgs = [line.rstrip() for line in f_gt.readlines()]
# pred_imgs = [line.rstrip() for line in f_rgb.readlines()]
assert len(gt_imgs) == len(pred_imgs)
psnr_avg = 0.0
ssim_avg = 0.0
for i in range(len(gt_imgs)):
gt = imread(gt_imgs[i])
pred = imread(pred_imgs[i])
psnr_temp = psnr(gt, pred)
psnr_avg += psnr_temp
ssim_temp = my_ssim(gt, pred)
ssim_avg += ssim_temp
print("psnr: ", psnr_temp)
print("ssim: ", ssim_temp)
psnr_avg /= float(len(gt_imgs))
ssim_avg /= float(len(gt_imgs))
print("psnr_avg: ", psnr_avg)
print("ssim_avg: ", ssim_avg)
return psnr_avg, ssim_avg
def mse(gt, pred):
return np.mean((gt - pred) ** 2)
def mse_raw(path, suffix="npy"):
gt_imgs = sorted(glob(path + "raw_tar*.%s" % suffix))
pred_imgs = sorted(glob(path + "raw_pred*.%s" % suffix))
# with open(split_path + "test_gt.txt", 'r') as f_gt, open(split_path+"test_rgb.txt","r") as f_rgb:
# gt_imgs = [line.rstrip() for line in f_gt.readlines()]
# pred_imgs = [line.rstrip() for line in f_rgb.readlines()]
assert len(gt_imgs) == len(pred_imgs)
mse_avg = 0.0
psnr_avg = 0.0
for i in range(len(gt_imgs)):
gt = np.load(gt_imgs[i])
pred = np.load(pred_imgs[i])
mse_temp = mse(gt, pred)
mse_avg += mse_temp
psnr_temp = psnr_raw(gt, pred)
psnr_avg += psnr_temp
print("mse: ", mse_temp)
print("psnr: ", psnr_temp)
mse_avg /= float(len(gt_imgs))
psnr_avg /= float(len(gt_imgs))
print("mse_avg: ", mse_avg)
print("psnr_avg: ", psnr_avg)
return mse_avg, psnr_avg
test_full = False
# if test_full:
# psnr_avg, ssim_avg = quan_eval(ROOT_PATH+"%s/vis_%s_full/"%(args.task, args.ckpt), "jpeg")
# mse_avg, psnr_avg_raw = mse_raw(ROOT_PATH+"%s/vis_%s_full/"%(args.task, args.ckpt))
# else:
psnr_avg, ssim_avg = quan_eval(args.path, "jpg")
mse_avg, psnr_avg_raw = mse_raw(args.path)
print(
"pnsr: {}, ssim: {}, mse: {}, psnr raw: {}".format(
psnr_avg, ssim_avg, mse_avg, psnr_avg_raw
)
)
|