File size: 3,365 Bytes
10b4a5f
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
10b4a5f
 
358ab8f
 
 
 
 
10b4a5f
 
 
358ab8f
 
 
10b4a5f
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
358ab8f
 
10b4a5f
 
358ab8f
 
10b4a5f
 
 
 
358ab8f
10b4a5f
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
358ab8f
10b4a5f
358ab8f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import cv2
import numpy as np
import math

# from skimage.metrics import structural_similarity as ssim
from skimage.measure import compare_ssim
from scipy.misc import imread
from glob import glob

import argparse

parser = argparse.ArgumentParser(description="evaluation codes")

parser.add_argument("--path", type=str, help="Path to evaluate images.")

args = parser.parse_args()


def psnr(img1, img2):
    mse = np.mean((img1 / 255.0 - img2 / 255.0) ** 2)
    if mse < 1.0e-10:
        return 100
    PIXEL_MAX = 1
    return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))


def psnr_raw(img1, img2):
    mse = np.mean((img1 - img2) ** 2)
    if mse < 1.0e-10:
        return 100
    PIXEL_MAX = 1
    return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))


def my_ssim(img1, img2):
    return compare_ssim(
        img1, img2, data_range=img1.max() - img1.min(), multichannel=True
    )


def quan_eval(path, suffix="jpg"):
    # path: /disk2/yazhou/projects/IISP/exps/test_final_unet_globalEDV2/
    # ours
    gt_imgs = sorted(glob(path + "tar*.%s" % suffix))
    pred_imgs = sorted(glob(path + "pred*.%s" % suffix))

    # with open(split_path + "test_gt.txt", 'r') as f_gt, open(split_path+"test_rgb.txt","r") as f_rgb:
    #     gt_imgs = [line.rstrip() for line in f_gt.readlines()]
    #     pred_imgs = [line.rstrip() for line in f_rgb.readlines()]

    assert len(gt_imgs) == len(pred_imgs)

    psnr_avg = 0.0
    ssim_avg = 0.0
    for i in range(len(gt_imgs)):
        gt = imread(gt_imgs[i])
        pred = imread(pred_imgs[i])
        psnr_temp = psnr(gt, pred)
        psnr_avg += psnr_temp
        ssim_temp = my_ssim(gt, pred)
        ssim_avg += ssim_temp

        print("psnr: ", psnr_temp)
        print("ssim: ", ssim_temp)

    psnr_avg /= float(len(gt_imgs))
    ssim_avg /= float(len(gt_imgs))

    print("psnr_avg: ", psnr_avg)
    print("ssim_avg: ", ssim_avg)

    return psnr_avg, ssim_avg


def mse(gt, pred):
    return np.mean((gt - pred) ** 2)


def mse_raw(path, suffix="npy"):
    gt_imgs = sorted(glob(path + "raw_tar*.%s" % suffix))
    pred_imgs = sorted(glob(path + "raw_pred*.%s" % suffix))

    # with open(split_path + "test_gt.txt", 'r') as f_gt, open(split_path+"test_rgb.txt","r") as f_rgb:
    #     gt_imgs = [line.rstrip() for line in f_gt.readlines()]
    #     pred_imgs = [line.rstrip() for line in f_rgb.readlines()]

    assert len(gt_imgs) == len(pred_imgs)

    mse_avg = 0.0
    psnr_avg = 0.0
    for i in range(len(gt_imgs)):
        gt = np.load(gt_imgs[i])
        pred = np.load(pred_imgs[i])
        mse_temp = mse(gt, pred)
        mse_avg += mse_temp
        psnr_temp = psnr_raw(gt, pred)
        psnr_avg += psnr_temp

        print("mse: ", mse_temp)
        print("psnr: ", psnr_temp)

    mse_avg /= float(len(gt_imgs))
    psnr_avg /= float(len(gt_imgs))

    print("mse_avg: ", mse_avg)
    print("psnr_avg: ", psnr_avg)

    return mse_avg, psnr_avg


test_full = False

# if test_full:
#     psnr_avg, ssim_avg = quan_eval(ROOT_PATH+"%s/vis_%s_full/"%(args.task, args.ckpt), "jpeg")
#     mse_avg, psnr_avg_raw = mse_raw(ROOT_PATH+"%s/vis_%s_full/"%(args.task, args.ckpt))
# else:
psnr_avg, ssim_avg = quan_eval(args.path, "jpg")
mse_avg, psnr_avg_raw = mse_raw(args.path)

print(
    "pnsr: {}, ssim: {}, mse: {}, psnr raw: {}".format(
        psnr_avg, ssim_avg, mse_avg, psnr_avg_raw
    )
)