File size: 2,134 Bytes
10b4a5f
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
358ab8f
10b4a5f
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
358ab8f
 
10b4a5f
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
358ab8f
 
 
 
10b4a5f
 
 
 
 
 
358ab8f
10b4a5f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import re
import cv2
import numpy as np

from ..utils.common import Notify


def read_list(list_path):
    """Read list."""
    if list_path is None or not os.path.exists(list_path):
        print(Notify.FAIL, "Not exist", list_path, Notify.ENDC)
        exit(-1)
    content = open(list_path).read().splitlines()
    return content


def load_pfm(pfm_path):
    with open(pfm_path, "rb") as fin:
        color = None
        width = None
        height = None
        scale = None
        data_type = None
        header = str(fin.readline().decode("UTF-8")).rstrip()

        if header == "PF":
            color = True
        elif header == "Pf":
            color = False
        else:
            raise Exception("Not a PFM file.")

        dim_match = re.match(r"^(\d+)\s(\d+)\s$", fin.readline().decode("UTF-8"))
        if dim_match:
            width, height = map(int, dim_match.groups())
        else:
            raise Exception("Malformed PFM header.")
        scale = float((fin.readline().decode("UTF-8")).rstrip())
        if scale < 0:  # little-endian
            data_type = "<f"
        else:
            data_type = ">f"  # big-endian
        data_string = fin.read()
        data = np.fromstring(data_string, data_type)
        shape = (height, width, 3) if color else (height, width)
        data = np.reshape(data, shape)
        data = np.flip(data, 0)
    return data


def _parse_img(img_paths, idx, config):
    img_path = img_paths[idx]
    img = cv2.imread(img_path)[:, :, ::-1]
    if config["resize"] > 0:
        img = cv2.resize(img, (config["resize"], config["resize"]))
    return img


def _parse_depth(depth_paths, idx, config):
    depth = load_pfm(depth_paths[idx])

    if config["resize"] > 0:
        target_size = config["resize"]
    if config["input_type"] == "raw":
        depth = cv2.resize(depth, (int(target_size / 2), int(target_size / 2)))
    else:
        depth = cv2.resize(depth, (target_size, target_size))
    return depth


def _parse_kpts(kpts_paths, idx, config):
    kpts = np.load(kpts_paths[idx])["pts"]
    # output: [N, 2] (W first H last)
    return kpts