Spaces:
Running
Running
File size: 5,705 Bytes
10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import argparse
import cv2
import numpy as np
import os
import math
import subprocess
from tqdm import tqdm
def compute_essential(matched_kp1, matched_kp2, K):
pts1 = cv2.undistortPoints(
matched_kp1,
cameraMatrix=K,
distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
)
pts2 = cv2.undistortPoints(
matched_kp2,
cameraMatrix=K,
distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
)
K_1 = np.eye(3)
# Estimate the homography between the matches using RANSAC
ransac_model, ransac_inliers = cv2.findEssentialMat(
pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000
)
if ransac_inliers is None or ransac_model.shape != (3, 3):
ransac_inliers = np.array([])
ransac_model = None
return ransac_model, ransac_inliers, pts1, pts2
def compute_error(R_GT, t_GT, E, pts1_norm, pts2_norm, inliers):
"""Compute the angular error between two rotation matrices and two translation vectors.
Keyword arguments:
R -- 2D numpy array containing an estimated rotation
gt_R -- 2D numpy array containing the corresponding ground truth rotation
t -- 2D numpy array containing an estimated translation as column
gt_t -- 2D numpy array containing the corresponding ground truth translation
"""
inliers = inliers.ravel()
R = np.eye(3)
t = np.zeros((3, 1))
sst = True
try:
_, R, t, _ = cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), inliers)
except:
sst = False
# calculate angle between provided rotations
#
if sst:
dR = np.matmul(R, np.transpose(R_GT))
dR = cv2.Rodrigues(dR)[0]
dR = np.linalg.norm(dR) * 180 / math.pi
# calculate angle between provided translations
dT = float(np.dot(t_GT.T, t))
dT /= float(np.linalg.norm(t_GT))
if dT > 1 or dT < -1:
print("Domain warning! dT:", dT)
dT = max(-1, min(1, dT))
dT = math.acos(dT) * 180 / math.pi
dT = np.minimum(dT, 180 - dT) # ambiguity of E estimation
else:
dR, dT = 180.0, 180.0
return dR, dT
def pose_evaluation(result_base_dir, dark_name1, dark_name2, enhancer, K, R_GT, t_GT):
try:
m_kp1 = np.load(result_base_dir + enhancer + "/DarkFeat/POINT_1/" + dark_name1)
m_kp2 = np.load(result_base_dir + enhancer + "/DarkFeat/POINT_2/" + dark_name2)
except:
return 180.0, 180.0
try:
E, inliers, pts1, pts2 = compute_essential(m_kp1, m_kp2, K)
except:
E, inliers, pts1, pts2 = np.zeros((3, 3)), np.array([]), None, None
dR, dT = compute_error(R_GT, t_GT, E, pts1, pts2, inliers)
return dR, dT
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--histeq", action="store_true")
parser.add_argument("--dataset_dir", type=str, default="/data/hyz/MID/")
opt = parser.parse_args()
sizer = (960, 640)
focallength_x = 4.504986436499113e03 / (6744 / sizer[0])
focallength_y = 4.513311442889859e03 / (4502 / sizer[1])
K = np.eye(3)
K[0, 0] = focallength_x
K[1, 1] = focallength_y
K[0, 2] = 3.363322177533149e03 / (6744 / sizer[0])
K[1, 2] = 2.291824660547715e03 / (4502 / sizer[1])
Kinv = np.linalg.inv(K)
Kinvt = np.transpose(Kinv)
PE_MT = np.zeros((6, 8))
enhancer = "None" if not opt.histeq else "HistEQ"
for scene in ["Indoor", "Outdoor"]:
dir_base = opt.dataset_dir + "/" + scene + "/"
base_save = "result_errors/" + scene + "/"
pair_list = sorted(os.listdir(dir_base))
os.makedirs(base_save, exist_ok=True)
for pair in tqdm(pair_list):
opention = 1
if scene == "Outdoor":
pass
else:
if int(pair[4::]) <= 17:
opention = 0
else:
pass
name = []
files = sorted(os.listdir(dir_base + pair))
for file_ in files:
if file_.endswith(".cr2"):
name.append(file_[0:9])
ISO = [
"00100",
"00200",
"00400",
"00800",
"01600",
"03200",
"06400",
"12800",
]
if opention == 1:
Shutter_speed = ["0.005", "0.01", "0.025", "0.05", "0.17", "0.5"]
else:
Shutter_speed = ["0.01", "0.02", "0.05", "0.1", "0.3", "1"]
E_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "E_estimated.npy")
F_GT = np.dot(np.dot(Kinvt, E_GT), Kinv)
R_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "R_GT.npy")
t_GT = np.load(dir_base + pair + "/GT_Correspondence/" + "T_GT.npy")
result_base_dir = "result/" + scene + "/" + pair + "/"
for iso in ISO:
for ex in Shutter_speed:
dark_name1 = name[0] + iso + "_" + ex + "_" + scene + ".npy"
dark_name2 = name[1] + iso + "_" + ex + "_" + scene + ".npy"
dr, dt = pose_evaluation(
result_base_dir, dark_name1, dark_name2, enhancer, K, R_GT, t_GT
)
PE_MT[Shutter_speed.index(ex), ISO.index(iso)] = max(dr, dt)
subprocess.check_output(
["mkdir", "-p", base_save + pair + f"/{enhancer}/"]
)
np.save(
base_save + pair + f"/{enhancer}/Pose_error_DarkFeat.npy", PE_MT
)
|