File size: 2,725 Bytes
10b4a5f
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
358ab8f
 
 
 
10b4a5f
 
 
 
 
 
358ab8f
10b4a5f
 
358ab8f
 
 
 
 
10b4a5f
 
 
 
358ab8f
10b4a5f
 
358ab8f
 
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
10b4a5f
358ab8f
10b4a5f
358ab8f
 
 
 
10b4a5f
 
358ab8f
10b4a5f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import glob
import rawpy
import cv2
import os
import numpy as np
import colour_demosaicing
from tqdm import tqdm


def process_raw(args, path, w_new, h_new):
    raw = rawpy.imread(str(path)).raw_image_visible
    if "_00200_" in str(path) or "_00100_" in str(path):
        raw = np.clip(raw.astype("float32") - 512, 0, 65535)
    else:
        raw = np.clip(raw.astype("float32") - 2048, 0, 65535)
    img = colour_demosaicing.demosaicing_CFA_Bayer_bilinear(raw, "RGGB").astype(
        "float32"
    )
    img = np.clip(img, 0, 16383)

    # HistEQ start
    if args.histeq:
        img2 = np.zeros_like(img)
        for i in range(3):
            hist, bins = np.histogram(img[..., i].flatten(), 16384, [0, 16384])
            cdf = hist.cumsum()
            cdf_normalized = cdf * float(hist.max()) / cdf.max()
            cdf_m = np.ma.masked_equal(cdf, 0)
            cdf_m = (cdf_m - cdf_m.min()) * 16383 / (cdf_m.max() - cdf_m.min())
            cdf = np.ma.filled(cdf_m, 0).astype("uint16")
            img2[..., i] = cdf[img[..., i].astype("int16")]
            img[..., i] = img2[..., i].astype("float32")
    # HistEQ end

    m = img.mean()
    d = np.abs(img - img.mean()).mean()
    img = (img - m + 2 * d) / 4 / d * 255
    image = np.clip(img, 0, 255)

    image = cv2.resize(
        image.astype("float32"), (w_new, h_new), interpolation=cv2.INTER_AREA
    )

    if args.histeq:
        path = str(path)
        os.makedirs(
            "/".join(path.split("/")[:-2] + [path.split("/")[-2] + "-npy"]),
            exist_ok=True,
        )
        np.save(
            "/".join(
                path.split("/")[:-2]
                + [path.split("/")[-2] + "-npy"]
                + [path.split("/")[-1].replace("cr2", "npy")]
            ),
            image,
        )
    else:
        path = str(path)
        os.makedirs(
            "/".join(path.split("/")[:-2] + [path.split("/")[-2] + "-npy-nohisteq"]),
            exist_ok=True,
        )
        np.save(
            "/".join(
                path.split("/")[:-2]
                + [path.split("/")[-2] + "-npy-nohisteq"]
                + [path.split("/")[-1].replace("cr2", "npy")]
            ),
            image,
        )


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--H", type=int, default=int(640))
    parser.add_argument("--W", type=int, default=int(960))
    parser.add_argument("--histeq", action="store_true")
    parser.add_argument("--dataset_dir", type=str, default="/data/hyz/MID/")
    args = parser.parse_args()

    path_ls = glob.glob(args.dataset_dir + "/*/pair*/?????/*")
    for path in tqdm(path_ls):
        process_raw(args, path, args.W, args.H)