Spaces:
Running
Running
File size: 5,500 Bytes
94cb1cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import argparse
import numpy as np
import imageio
import torch
from tqdm import tqdm
import time
import scipy
import scipy.io
import scipy.misc
import os
import sys
from lib.model_test import D2Net
from lib.utils import preprocess_image
from lib.pyramid import process_multiscale
import cv2
import matplotlib.pyplot as plt
from PIL import Image
from skimage.feature import match_descriptors
from skimage.measure import ransac
from skimage.transform import ProjectiveTransform, AffineTransform
import pydegensac
parser = argparse.ArgumentParser(description='Feature extraction script')
parser.add_argument('imgs', type=str, nargs=2)
parser.add_argument(
'--preprocessing', type=str, default='caffe',
help='image preprocessing (caffe or torch)'
)
parser.add_argument(
'--model_file', type=str,
help='path to the full model'
)
parser.add_argument(
'--no-relu', dest='use_relu', action='store_false',
help='remove ReLU after the dense feature extraction module'
)
parser.set_defaults(use_relu=True)
parser.add_argument(
'--sift', dest='use_sift', action='store_true',
help='Show sift matching as well'
)
parser.set_defaults(use_sift=False)
def extract(image, args, model, device):
if len(image.shape) == 2:
image = image[:, :, np.newaxis]
image = np.repeat(image, 3, -1)
input_image = preprocess_image(
image,
preprocessing=args.preprocessing
)
with torch.no_grad():
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32),
device=device
),
model,
scales=[1]
)
keypoints = keypoints[:, [1, 0, 2]]
feat = {}
feat['keypoints'] = keypoints
feat['scores'] = scores
feat['descriptors'] = descriptors
return feat
def rordMatching(image1, image2, feat1, feat2, matcher="BF"):
if(matcher == "BF"):
t0 = time.time()
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
matches = bf.match(feat1['descriptors'], feat2['descriptors'])
matches = sorted(matches, key=lambda x:x.distance)
t1 = time.time()
print("Time to extract matches: ", t1-t0)
print("Number of raw matches:", len(matches))
match1 = [m.queryIdx for m in matches]
match2 = [m.trainIdx for m in matches]
keypoints_left = feat1['keypoints'][match1, : 2]
keypoints_right = feat2['keypoints'][match2, : 2]
np.random.seed(0)
t0 = time.time()
H, inliers = pydegensac.findHomography(keypoints_left, keypoints_right, 10.0, 0.99, 10000)
t1 = time.time()
print("Time for ransac: ", t1-t0)
n_inliers = np.sum(inliers)
print('Number of inliers: %d.' % n_inliers)
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in keypoints_left[inliers]]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in keypoints_right[inliers]]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(n_inliers)]
draw_params = dict(matchColor = (0,255,0),
singlePointColor = (255,0,0),
# matchesMask = matchesMask,
flags = 0)
image3 = cv2.drawMatches(image1, inlier_keypoints_left, image2, inlier_keypoints_right, placeholder_matches, None, **draw_params)
plt.figure(figsize=(20, 20))
plt.imshow(image3)
plt.axis('off')
plt.show()
def siftMatching(img1, img2):
img1 = np.array(cv2.cvtColor(np.array(img1), cv2.COLOR_BGR2RGB))
img2 = np.array(cv2.cvtColor(np.array(img2), cv2.COLOR_BGR2RGB))
# surf = cv2.xfeatures2d.SURF_create(100)
surf = cv2.xfeatures2d.SIFT_create()
kp1, des1 = surf.detectAndCompute(img1, None)
kp2, des2 = surf.detectAndCompute(img2, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
good = []
for m, n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1, 2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1, 2)
model, inliers = pydegensac.findHomography(src_pts, dst_pts, 10.0, 0.99, 10000)
n_inliers = np.sum(inliers)
print('Number of inliers: %d.' % n_inliers)
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in src_pts[inliers]]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in dst_pts[inliers]]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(n_inliers)]
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None)
cv2.imshow('Matches', image3)
cv2.waitKey(0)
src_pts = np.float32([ inlier_keypoints_left[m.queryIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
dst_pts = np.float32([ inlier_keypoints_right[m.trainIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
return src_pts, dst_pts
if __name__ == '__main__':
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
args = parser.parse_args()
model = D2Net(
model_file=args.model_file,
use_relu=args.use_relu,
use_cuda=use_cuda
)
image1 = np.array(Image.open(args.imgs[0]))
image2 = np.array(Image.open(args.imgs[1]))
print('--\nRoRD\n--')
feat1 = extract(image1, args, model, device)
feat2 = extract(image2, args, model, device)
print("Features extracted.")
rordMatching(image1, image2, feat1, feat2, matcher="BF")
if(args.use_sift):
print('--\nSIFT\n--')
siftMatching(image1, image2)
|