File size: 5,554 Bytes
10b4a5f
 
 
 
 
358ab8f
10b4a5f
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
10b4a5f
358ab8f
 
10b4a5f
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
358ab8f
10b4a5f
358ab8f
10b4a5f
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
358ab8f
 
10b4a5f
 
 
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
10b4a5f
 
358ab8f
 
 
10b4a5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
from torch import nn


def simple_nms(scores, nms_radius):
    assert nms_radius >= 0

    def max_pool(x):
        return torch.nn.functional.max_pool2d(
            x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius
        )

    zeros = torch.zeros_like(scores)
    max_mask = scores == max_pool(scores)
    for _ in range(2):
        supp_mask = max_pool(max_mask.float()) > 0
        supp_scores = torch.where(supp_mask, zeros, scores)
        new_max_mask = supp_scores == max_pool(supp_scores)
        max_mask = max_mask | (new_max_mask & (~supp_mask))
    return torch.where(max_mask, scores, zeros)


def remove_borders(keypoints, scores, b, h, w):
    mask_h = (keypoints[:, 0] >= b) & (keypoints[:, 0] < (h - b))
    mask_w = (keypoints[:, 1] >= b) & (keypoints[:, 1] < (w - b))
    mask = mask_h & mask_w
    return keypoints[mask], scores[mask]


def top_k_keypoints(keypoints, scores, k):
    if k >= len(keypoints):
        return keypoints, scores
    scores, indices = torch.topk(scores, k, dim=0)
    return keypoints[indices], scores


def sample_descriptors(keypoints, descriptors, s):
    b, c, h, w = descriptors.shape
    keypoints = keypoints - s / 2 + 0.5
    keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],).to(
        keypoints
    )[None]
    keypoints = keypoints * 2 - 1  # normalize to (-1, 1)
    args = {"align_corners": True} if int(torch.__version__[2]) > 2 else {}
    descriptors = torch.nn.functional.grid_sample(
        descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", **args
    )
    descriptors = torch.nn.functional.normalize(
        descriptors.reshape(b, c, -1), p=2, dim=1
    )
    return descriptors


class SuperPoint(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = {**config}

        self.relu = nn.ReLU(inplace=True)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256

        self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
        self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
        self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
        self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
        self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
        self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
        self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
        self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)

        self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
        self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0)

        self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
        self.convDb = nn.Conv2d(
            c5, self.config["descriptor_dim"], kernel_size=1, stride=1, padding=0
        )

        self.load_state_dict(torch.load(config["model_path"]))

        mk = self.config["max_keypoints"]
        if mk == 0 or mk < -1:
            raise ValueError('"max_keypoints" must be positive or "-1"')

        print("Loaded SuperPoint model")

    def forward(self, data):
        # Shared Encoder
        x = self.relu(self.conv1a(data))
        x = self.relu(self.conv1b(x))
        x = self.pool(x)
        x = self.relu(self.conv2a(x))
        x = self.relu(self.conv2b(x))
        x = self.pool(x)
        x = self.relu(self.conv3a(x))
        x = self.relu(self.conv3b(x))
        x = self.pool(x)
        x = self.relu(self.conv4a(x))
        x = self.relu(self.conv4b(x))
        # Compute the dense keypoint scores
        cPa = self.relu(self.convPa(x))
        scores = self.convPb(cPa)
        scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
        b, c, h, w = scores.shape
        scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
        scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
        scores = simple_nms(scores, self.config["nms_radius"])

        # Extract keypoints
        keypoints = [
            torch.nonzero(s > self.config["detection_threshold"]) for s in scores
        ]
        scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]

        # Discard keypoints near the image borders
        keypoints, scores = list(
            zip(
                *[
                    remove_borders(k, s, self.config["remove_borders"], h * 8, w * 8)
                    for k, s in zip(keypoints, scores)
                ]
            )
        )

        # Keep the k keypoints with highest score
        if self.config["max_keypoints"] >= 0:
            keypoints, scores = list(
                zip(
                    *[
                        top_k_keypoints(k, s, self.config["max_keypoints"])
                        for k, s in zip(keypoints, scores)
                    ]
                )
            )

        # Convert (h, w) to (x, y)
        keypoints = [torch.flip(k, [1]).float() for k in keypoints]

        # Compute the dense descriptors
        cDa = self.relu(self.convDa(x))
        descriptors = self.convDb(cDa)
        descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1)

        # Extract descriptors
        descriptors = [
            sample_descriptors(k[None], d[None], 8)[0]
            for k, d in zip(keypoints, descriptors)
        ]

        return {
            "keypoints": keypoints,
            "scores": scores,
            "descriptors": descriptors,
        }