File size: 4,067 Bytes
10b4a5f
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
358ab8f
10b4a5f
 
358ab8f
10b4a5f
 
 
358ab8f
 
 
 
 
10b4a5f
 
358ab8f
 
 
10b4a5f
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import numpy as np
import cv2
import os
from loss import batch_episym
from tqdm import tqdm

import sys

ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.insert(0, ROOT_DIR)

from utils import evaluation_utils, train_utils


def valid(valid_loader, model, match_loss, config, model_config):
    model.eval()
    loader_iter = iter(valid_loader)
    num_pair = 0
    total_loss, total_acc_corr, total_acc_incorr = 0, 0, 0
    total_precision, total_recall = torch.zeros(
        model_config.layer_num, device="cuda"
    ), torch.zeros(model_config.layer_num, device="cuda")
    total_acc_mid = torch.zeros(len(model_config.seedlayer) - 1, device="cuda")

    with torch.no_grad():
        if config.local_rank == 0:
            loader_iter = tqdm(loader_iter)
            print("validating...")
        for test_data in loader_iter:
            num_pair += 1
            test_data = train_utils.tocuda(test_data)
            res = model(test_data)
            loss_res = match_loss.run(test_data, res)

            total_acc_corr += loss_res["acc_corr"]
            total_acc_incorr += loss_res["acc_incorr"]
            total_loss += loss_res["total_loss"]

            if config.model_name == "SGM":
                total_acc_mid += loss_res["mid_acc_corr"]
                total_precision, total_recall = (
                    total_precision + loss_res["pre_seed_conf"],
                    total_recall + loss_res["recall_seed_conf"],
                )

        total_acc_corr /= num_pair
        total_acc_incorr /= num_pair
        total_precision /= num_pair
        total_recall /= num_pair
        total_acc_mid /= num_pair

        # apply tensor reduction
        (
            total_loss,
            total_acc_corr,
            total_acc_incorr,
            total_precision,
            total_recall,
            total_acc_mid,
        ) = (
            train_utils.reduce_tensor(total_loss, "sum"),
            train_utils.reduce_tensor(total_acc_corr, "mean"),
            train_utils.reduce_tensor(total_acc_incorr, "mean"),
            train_utils.reduce_tensor(total_precision, "mean"),
            train_utils.reduce_tensor(total_recall, "mean"),
            train_utils.reduce_tensor(total_acc_mid, "mean"),
        )
    model.train()
    return (
        total_loss,
        total_acc_corr,
        total_acc_incorr,
        total_precision,
        total_recall,
        total_acc_mid,
    )


def dump_train_vis(res, data, step, config):
    # batch matching
    p = res["p"][:, :-1, :-1]
    score, index1 = torch.max(p, dim=-1)
    _, index2 = torch.max(p, dim=-2)
    mask_th = score > 0.2
    mask_mc = index2.gather(index=index1, dim=1) == torch.arange(len(p[0])).cuda()[None]
    mask_p = mask_th & mask_mc  # B*N

    corr1, corr2 = data["x1"], data["x2"].gather(
        index=index1[:, :, None].expand(-1, -1, 2), dim=1
    )
    corr1_kpt, corr2_kpt = data["kpt1"], data["kpt2"].gather(
        index=index1[:, :, None].expand(-1, -1, 2), dim=1
    )
    epi_dis = batch_episym(corr1, corr2, data["e_gt"])
    mask_inlier = epi_dis < config.inlier_th  # B*N

    # dump vis
    for cur_mask_p, cur_mask_inlier, cur_corr1, cur_corr2, img_path1, img_path2 in zip(
        mask_p, mask_inlier, corr1_kpt, corr2_kpt, data["img_path1"], data["img_path2"]
    ):
        img1, img2 = cv2.imread(img_path1), cv2.imread(img_path2)
        dis_play = evaluation_utils.draw_match(
            img1,
            img2,
            cur_corr1[cur_mask_p].cpu().numpy(),
            cur_corr2[cur_mask_p].cpu().numpy(),
            inlier=cur_mask_inlier,
        )
        base_name_seq = os.path.join(
            img_path1.split("/")[-1]
            + "_"
            + img_path2.split("/")[-1]
            + "_"
            + img_path1.split("/")[-2]
        )
        save_path = os.path.join(
            config.train_vis_folder,
            "train_vis",
            config.log_base,
            str(step),
            base_name_seq + ".png",
        )
        cv2.imwrite(save_path, dis_play)