File size: 7,639 Bytes
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
 
 
10b4a5f
358ab8f
10b4a5f
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
358ab8f
 
 
 
10b4a5f
 
 
 
358ab8f
10b4a5f
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
10b4a5f
358ab8f
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
10b4a5f
 
 
358ab8f
 
 
 
10b4a5f
358ab8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np


def norm_kpt(K, kp):
    kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1)
    kp = np.matmul(kp, np.linalg.inv(K).T)[:, :2]
    return kp


def unnorm_kp(K, kp):
    kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1)
    kp = np.matmul(kp, K.T)[:, :2]
    return kp


def interpolate_depth(pos, depth):
    # pos:[y,x]
    ids = np.array(range(0, pos.shape[0]))

    h, w = depth.shape

    i = pos[:, 0]
    j = pos[:, 1]
    valid_corner = np.logical_and(
        np.logical_and(i > 0, i < h - 1), np.logical_and(j > 0, j < w - 1)
    )
    i, j = i[valid_corner], j[valid_corner]
    ids = ids[valid_corner]

    i_top_left = np.floor(i).astype(np.int32)
    j_top_left = np.floor(j).astype(np.int32)

    i_top_right = np.floor(i).astype(np.int32)
    j_top_right = np.ceil(j).astype(np.int32)

    i_bottom_left = np.ceil(i).astype(np.int32)
    j_bottom_left = np.floor(j).astype(np.int32)

    i_bottom_right = np.ceil(i).astype(np.int32)
    j_bottom_right = np.ceil(j).astype(np.int32)

    # Valid depth
    depth_top_left, depth_top_right, depth_down_left, depth_down_right = (
        depth[i_top_left, j_top_left],
        depth[i_top_right, j_top_right],
        depth[i_bottom_left, j_bottom_left],
        depth[i_bottom_right, j_bottom_right],
    )

    valid_depth = np.logical_and(
        np.logical_and(depth_top_left > 0, depth_top_right > 0),
        np.logical_and(depth_down_left > 0, depth_down_left > 0),
    )
    ids = ids[valid_depth]
    depth_top_left, depth_top_right, depth_down_left, depth_down_right = (
        depth_top_left[valid_depth],
        depth_top_right[valid_depth],
        depth_down_left[valid_depth],
        depth_down_right[valid_depth],
    )

    i, j, i_top_left, j_top_left = (
        i[valid_depth],
        j[valid_depth],
        i_top_left[valid_depth],
        j_top_left[valid_depth],
    )

    # Interpolation
    dist_i_top_left = i - i_top_left.astype(np.float32)
    dist_j_top_left = j - j_top_left.astype(np.float32)
    w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left)
    w_top_right = (1 - dist_i_top_left) * dist_j_top_left
    w_bottom_left = dist_i_top_left * (1 - dist_j_top_left)
    w_bottom_right = dist_i_top_left * dist_j_top_left

    interpolated_depth = (
        w_top_left * depth_top_left
        + w_top_right * depth_top_right
        + w_bottom_left * depth_down_left
        + w_bottom_right * depth_down_right
    )
    return [interpolated_depth, ids]


def reprojection(depth_map, kpt, dR, dt, K1_img2depth, K1, K2):
    # warp kpt from img1 to img2
    def swap_axis(data):
        return np.stack([data[:, 1], data[:, 0]], axis=-1)

    kp_depth = unnorm_kp(K1_img2depth, kpt)
    uv_depth = swap_axis(kp_depth)
    z, valid_idx = interpolate_depth(uv_depth, depth_map)

    norm_kp = norm_kpt(K1, kpt)
    norm_kp_valid = np.concatenate(
        [norm_kp[valid_idx, :], np.ones((len(valid_idx), 1))], axis=-1
    )
    xyz_valid = norm_kp_valid * z.reshape(-1, 1)
    xyz2 = np.matmul(xyz_valid, dR.T) + dt.reshape(1, 3)
    xy2 = xyz2[:, :2] / xyz2[:, 2:]
    kp2, valid = np.ones(kpt.shape) * 1e5, np.zeros(kpt.shape[0])
    kp2[valid_idx] = unnorm_kp(K2, xy2)
    valid[valid_idx] = 1
    return kp2, valid.astype(bool)


def reprojection_2s(kp1, kp2, depth1, depth2, K1, K2, dR, dt, size1, size2):
    # size:H*W
    depth_size1, depth_size2 = [depth1.shape[0], depth1.shape[1]], [
        depth2.shape[0],
        depth2.shape[1],
    ]
    scale_1 = [float(depth_size1[0]) / size1[0], float(depth_size1[1]) / size1[1], 1]
    scale_2 = [float(depth_size2[0]) / size2[0], float(depth_size2[1]) / size2[1], 1]
    K1_img2depth, K2_img2depth = np.diag(np.asarray(scale_1)), np.diag(
        np.asarray(scale_2)
    )
    kp1_2_proj, valid1_2 = reprojection(depth1, kp1, dR, dt, K1_img2depth, K1, K2)
    kp2_1_proj, valid2_1 = reprojection(
        depth2, kp2, dR.T, -np.matmul(dR.T, dt), K2_img2depth, K2, K1
    )
    return [kp1_2_proj, kp2_1_proj], [valid1_2, valid2_1]


def make_corr(
    kp1,
    kp2,
    desc1,
    desc2,
    depth1,
    depth2,
    K1,
    K2,
    dR,
    dt,
    size1,
    size2,
    corr_th,
    incorr_th,
    check_desc=False,
):
    # make reprojection
    [kp1_2, kp2_1], [valid1_2, valid2_1] = reprojection_2s(
        kp1, kp2, depth1, depth2, K1, K2, dR, dt, size1, size2
    )
    num_pts1, num_pts2 = kp1.shape[0], kp2.shape[0]
    # reprojection error
    dis_mat1 = np.sqrt(
        abs(
            (kp1**2).sum(1, keepdims=True)
            + (kp2_1**2).sum(1, keepdims=False)[np.newaxis]
            - 2 * np.matmul(kp1, kp2_1.T)
        )
    )
    dis_mat2 = np.sqrt(
        abs(
            (kp2**2).sum(1, keepdims=True)
            + (kp1_2**2).sum(1, keepdims=False)[np.newaxis]
            - 2 * np.matmul(kp2, kp1_2.T)
        )
    )
    repro_error = np.maximum(dis_mat1, dis_mat2.T)  # n1*n2

    # find corr index
    nn_sort1 = np.argmin(repro_error, axis=1)
    nn_sort2 = np.argmin(repro_error, axis=0)
    mask_mutual = nn_sort2[nn_sort1] == np.arange(kp1.shape[0])
    mask_inlier = (
        np.take_along_axis(
            repro_error, indices=nn_sort1[:, np.newaxis], axis=-1
        ).squeeze(1)
        < corr_th
    )
    mask = mask_mutual & mask_inlier
    corr_index = np.stack(
        [np.arange(num_pts1)[mask], np.arange(num_pts2)[nn_sort1[mask]]], axis=-1
    )

    if check_desc:
        # filter kpt in same pos using desc distance(e.g. DoG kpt)
        x1_valid, x2_valid = kp1[corr_index[:, 0]], kp2[corr_index[:, 1]]
        mask_samepos1 = np.logical_and(
            x1_valid[:, 0, np.newaxis] == kp1[np.newaxis, :, 0],
            x1_valid[:, 1, np.newaxis] == kp1[np.newaxis, :, 1],
        )
        mask_samepos2 = np.logical_and(
            x2_valid[:, 0, np.newaxis] == kp2[np.newaxis, :, 0],
            x2_valid[:, 1, np.newaxis] == kp2[np.newaxis, :, 1],
        )
        duplicated_mask = np.logical_or(
            mask_samepos1.sum(-1) > 1, mask_samepos2.sum(-1) > 1
        )
        duplicated_index = np.nonzero(duplicated_mask)[0]

        unique_corr_index = corr_index[~duplicated_mask]
        clean_duplicated_corr = []
        for index in duplicated_index:
            cur_desc1, cur_desc2 = (
                desc1[mask_samepos1[index]],
                desc2[mask_samepos2[index]],
            )
            cur_desc_mat = np.matmul(cur_desc1, cur_desc2.T)
            cur_max_index = [
                np.argmax(cur_desc_mat) // cur_desc_mat.shape[1],
                np.argmax(cur_desc_mat) % cur_desc_mat.shape[1],
            ]
            clean_duplicated_corr.append(
                np.stack(
                    [
                        np.arange(num_pts1)[mask_samepos1[index]][cur_max_index[0]],
                        np.arange(num_pts2)[mask_samepos2[index]][cur_max_index[1]],
                    ]
                )
            )

        clean_corr_index = unique_corr_index
        if len(clean_duplicated_corr) != 0:
            clean_duplicated_corr = np.stack(clean_duplicated_corr, axis=0)
            clean_corr_index = np.concatenate(
                [clean_corr_index, clean_duplicated_corr], axis=0
            )
    else:
        clean_corr_index = corr_index
    # find incorr
    mask_incorr1 = np.min(dis_mat2.T[valid1_2], axis=-1) > incorr_th
    mask_incorr2 = np.min(dis_mat1.T[valid2_1], axis=-1) > incorr_th
    incorr_index1, incorr_index2 = (
        np.arange(num_pts1)[valid1_2][mask_incorr1.squeeze()],
        np.arange(num_pts2)[valid2_1][mask_incorr2.squeeze()],
    )

    return clean_corr_index, incorr_index1, incorr_index2