Spaces:
Running
Running
File size: 10,078 Bytes
9223079 4c12b36 9223079 4c12b36 9223079 86e54ac 9223079 b31006a a19d7bd 9223079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import argparse
import gradio as gr
from hloc import extract_features
from extra_utils.utils import (
matcher_zoo,
device,
match_dense,
match_features,
get_model,
get_feature_model,
display_matches,
)
def run_matching(
match_threshold, extract_max_keypoints, keypoint_threshold, key, image0, image1
):
# image0 and image1 is RGB mode
if image0 is None or image1 is None:
raise gr.Error("Error: No images found! Please upload two images.")
model = matcher_zoo[key]
match_conf = model["config"]
# update match config
match_conf["model"]["match_threshold"] = match_threshold
match_conf["model"]["max_keypoints"] = extract_max_keypoints
matcher = get_model(match_conf)
if model["dense"]:
pred = match_dense.match_images(
matcher, image0, image1, match_conf["preprocessing"], device=device
)
del matcher
extract_conf = None
else:
extract_conf = model["config_feature"]
# update extract config
extract_conf["model"]["max_keypoints"] = extract_max_keypoints
extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
extractor = get_feature_model(extract_conf)
pred0 = extract_features.extract(
extractor, image0, extract_conf["preprocessing"]
)
pred1 = extract_features.extract(
extractor, image1, extract_conf["preprocessing"]
)
pred = match_features.match_images(matcher, pred0, pred1)
del extractor
fig, num_inliers = display_matches(pred)
del pred
return (
fig,
{"matches number": num_inliers},
{"match_conf": match_conf, "extractor_conf": extract_conf},
)
def ui_change_imagebox(choice):
return {"value": None, "source": choice, "__type__": "update"}
def ui_reset_state(
match_threshold, extract_max_keypoints, keypoint_threshold, key, image0, image1
):
match_threshold = 0.2
extract_max_keypoints = 1000
keypoint_threshold = 0.015
key = list(matcher_zoo.keys())[0]
image0 = None
image1 = None
return (
match_threshold,
extract_max_keypoints,
keypoint_threshold,
key,
image0,
image1,
{"value": None, "source": "upload", "__type__": "update"},
{"value": None, "source": "upload", "__type__": "update"},
"upload",
None,
{},
{},
)
def run(config):
with gr.Blocks(css="footer {visibility: hidden}"
) as app:
gr.Markdown(
"""
<p align="center">
<h1 align="center">Image Matching WebUI</h1>
</p>
"""
)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
matcher_list = gr.Dropdown(
choices=list(matcher_zoo.keys()),
value="disk+lightglue",
label="Matching Model",
interactive=True,
)
match_image_src = gr.Radio(
["upload", "webcam", "canvas"],
label="Image Source",
value="upload",
)
with gr.Row():
match_setting_threshold = gr.Slider(
minimum=0.0,
maximum=1,
step=0.001,
label="Match threshold",
value=0.1,
)
match_setting_max_features = gr.Slider(
minimum=10,
maximum=10000,
step=10,
label="Max number of features",
value=1000,
)
# TODO: add line settings
with gr.Row():
detect_keypoints_threshold = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
label="Keypoint threshold",
value=0.015,
)
detect_line_threshold = gr.Slider(
minimum=0.1,
maximum=1,
step=0.01,
label="Line threshold",
value=0.2,
)
# matcher_lists = gr.Radio(
# ["NN-mutual", "Dual-Softmax"],
# label="Matcher mode",
# value="NN-mutual",
# )
with gr.Row():
input_image0 = gr.Image(
label="Image 0",
type="numpy",
interactive=True,
image_mode="RGB",
)
input_image1 = gr.Image(
label="Image 1",
type="numpy",
interactive=True,
image_mode="RGB",
)
with gr.Row():
button_reset = gr.Button(label="Reset", value="Reset")
button_run = gr.Button(
label="Run Match", value="Run Match", variant="primary"
)
with gr.Accordion("Open for More!", open=False):
gr.Markdown(
f"""
<h3>Supported Algorithms</h3>
{", ".join(matcher_zoo.keys())}
"""
)
# collect inputs
inputs = [
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
matcher_list,
input_image0,
input_image1,
]
# Add some examples
with gr.Row():
examples = [
[
0.1,
2000,
0.015,
"disk+lightglue",
"datasets/sacre_coeur/mapping/71295362_4051449754.jpg",
"datasets/sacre_coeur/mapping/93341989_396310999.jpg",
],
[
0.1,
2000,
0.015,
"loftr",
"datasets/sacre_coeur/mapping/03903474_1471484089.jpg",
"datasets/sacre_coeur/mapping/02928139_3448003521.jpg",
],
[
0.1,
2000,
0.015,
"disk",
"datasets/sacre_coeur/mapping/10265353_3838484249.jpg",
"datasets/sacre_coeur/mapping/51091044_3486849416.jpg",
],
[
0.1,
2000,
0.015,
"topicfm",
"datasets/sacre_coeur/mapping/44120379_8371960244.jpg",
"datasets/sacre_coeur/mapping/93341989_396310999.jpg",
],
[
0.1,
2000,
0.015,
"superpoint+superglue",
"datasets/sacre_coeur/mapping/17295357_9106075285.jpg",
"datasets/sacre_coeur/mapping/44120379_8371960244.jpg",
],
]
# Example inputs
gr.Examples(
examples=examples,
inputs=inputs,
outputs=[],
fn=run_matching,
cache_examples=False,
label="Examples (click one of the images below to Run Match)",
)
with gr.Column():
output_mkpts = gr.Image(label="Keypoints Matching", type="numpy")
matches_result_info = gr.JSON(label="Matches Statistics")
matcher_info = gr.JSON(label="Match info")
# callbacks
match_image_src.change(
fn=ui_change_imagebox, inputs=match_image_src, outputs=input_image0
)
match_image_src.change(
fn=ui_change_imagebox, inputs=match_image_src, outputs=input_image1
)
# collect outputs
outputs = [
output_mkpts,
matches_result_info,
matcher_info,
]
# button callbacks
button_run.click(fn=run_matching, inputs=inputs, outputs=outputs)
# Reset images
reset_outputs = [
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
matcher_list,
input_image0,
input_image1,
input_image0,
input_image1,
match_image_src,
output_mkpts,
matches_result_info,
matcher_info,
]
button_reset.click(fn=ui_reset_state, inputs=inputs, outputs=reset_outputs)
app.queue()
app.launch(share=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config_path", type=str, default="config.yaml", help="configuration file path"
)
args = parser.parse_args()
config = None
run(config)
|