Spaces:
Running
Running
File size: 18,872 Bytes
f90241e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
![banner](assets/mast3r.jpg)
Official implementation of `Grounding Image Matching in 3D with MASt3R`
[[Project page](https://dust3r.europe.naverlabs.com/)], [[MASt3R arxiv](https://arxiv.org/abs/2406.09756)], [[DUSt3R arxiv](https://arxiv.org/abs/2312.14132)]
![Example of matching results obtained from MASt3R](assets/examples.jpg)
![High level overview of MASt3R's architecture](assets/mast3r_archi.jpg)
```bibtex
@misc{mast3r_arxiv24,
title={Grounding Image Matching in 3D with MASt3R},
author={Vincent Leroy and Yohann Cabon and Jerome Revaud},
year={2024},
eprint={2406.09756},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inproceedings{dust3r_cvpr24,
title={DUSt3R: Geometric 3D Vision Made Easy},
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
booktitle = {CVPR},
year = {2024}
}
```
## Table of Contents
- [Table of Contents](#table-of-contents)
- [License](#license)
- [Get Started](#get-started)
- [Installation](#installation)
- [Checkpoints](#checkpoints)
- [Interactive demo](#interactive-demo)
- [Interactive demo with docker](#interactive-demo-with-docker)
- [Usage](#usage)
- [Training](#training)
- [Datasets](#datasets)
- [Demo](#demo)
- [Our Hyperparameters](#our-hyperparameters)
- [Visual Localization](#visual-localization)
- [Dataset Preparation](#dataset-preparation)
- [Example Commands](#example-commands)
## License
The code is distributed under the CC BY-NC-SA 4.0 License.
See [LICENSE](LICENSE) for more information.
```python
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
```
## Get Started
### Installation
1. Clone MASt3R.
```bash
git clone --recursive https://github.com/naver/mast3r
cd mast3r
# if you have already cloned mast3r:
# git submodule update --init --recursive
```
2. Create the environment, here we show an example using conda.
```bash
conda create -n mast3r python=3.11 cmake=3.14.0
conda activate mast3r
conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia # use the correct version of cuda for your system
pip install -r requirements.txt
pip install -r dust3r/requirements.txt
# Optional: you can also install additional packages to:
# - add support for HEIC images
# - add required packages for visloc.py
pip install -r dust3r/requirements_optional.txt
```
3. Optional, compile the cuda kernels for RoPE (as in CroCo v2).
```bash
# DUST3R relies on RoPE positional embeddings for which you can compile some cuda kernels for faster runtime.
cd dust3r/croco/models/curope/
python setup.py build_ext --inplace
cd ../../../../
```
### Checkpoints
You can obtain the checkpoints by two ways:
1) You can use our huggingface_hub integration: the models will be downloaded automatically.
2) Otherwise, We provide several pre-trained models:
| Modelname | Training resolutions | Head | Encoder | Decoder |
|-------------|----------------------|------|---------|---------|
| [`MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric`](https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth) | 512x384, 512x336, 512x288, 512x256, 512x160 | CatMLP+DPT | ViT-L | ViT-B |
You can check the hyperparameters we used to train these models in the [section: Our Hyperparameters](#our-hyperparameters)
Make sure to check license of the datasets we used.
To download a specific model, for example `MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth`:
```bash
mkdir -p checkpoints/
wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth -P checkpoints/
```
For these checkpoints, make sure to agree to the license of all the training datasets we used, in addition to CC-BY-NC-SA 4.0.
The mapfree dataset license in particular is very restrictive. For more information, check [CHECKPOINTS_NOTICE](CHECKPOINTS_NOTICE).
### Interactive demo
There are two demos available:
```
demo.py is the updated demo for MASt3R. It uses our new sparse global alignment method that allows you to reconstruct larger scenes
python3 demo.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric
# Use --weights to load a checkpoint from a local file, eg --weights checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth
# Use --local_network to make it accessible on the local network, or --server_name to specify the url manually
# Use --server_port to change the port, by default it will search for an available port starting at 7860
# Use --device to use a different device, by default it's "cuda"
demo_dust3r_ga.py is the same demo as in dust3r (+ compatibility for MASt3R models)
see https://github.com/naver/dust3r?tab=readme-ov-file#interactive-demo for details
```
### Interactive demo with docker
TODO
![demo](assets/demo.jpg)
## Usage
```python
from mast3r.model import AsymmetricMASt3R
from mast3r.fast_nn import fast_reciprocal_NNs
import mast3r.utils.path_to_dust3r
from dust3r.inference import inference
from dust3r.utils.image import load_images
if __name__ == '__main__':
device = 'cuda'
schedule = 'cosine'
lr = 0.01
niter = 300
model_name = "naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"
# you can put the path to a local checkpoint in model_name if needed
model = AsymmetricMASt3R.from_pretrained(model_name).to(device)
images = load_images(['dust3r/croco/assets/Chateau1.png', 'dust3r/croco/assets/Chateau2.png'], size=512)
output = inference([tuple(images)], model, device, batch_size=1, verbose=False)
# at this stage, you have the raw dust3r predictions
view1, pred1 = output['view1'], output['pred1']
view2, pred2 = output['view2'], output['pred2']
desc1, desc2 = pred1['desc'].squeeze(0).detach(), pred2['desc'].squeeze(0).detach()
# find 2D-2D matches between the two images
matches_im0, matches_im1 = fast_reciprocal_NNs(desc1, desc2, subsample_or_initxy1=8,
device=device, dist='dot', block_size=2**13)
# ignore small border around the edge
H0, W0 = view1['true_shape'][0]
valid_matches_im0 = (matches_im0[:, 0] >= 3) & (matches_im0[:, 0] < int(W0) - 3) & (
matches_im0[:, 1] >= 3) & (matches_im0[:, 1] < int(H0) - 3)
H1, W1 = view2['true_shape'][0]
valid_matches_im1 = (matches_im1[:, 0] >= 3) & (matches_im1[:, 0] < int(W1) - 3) & (
matches_im1[:, 1] >= 3) & (matches_im1[:, 1] < int(H1) - 3)
valid_matches = valid_matches_im0 & valid_matches_im1
matches_im0, matches_im1 = matches_im0[valid_matches], matches_im1[valid_matches]
# visualize a few matches
import numpy as np
import torch
import torchvision.transforms.functional
from matplotlib import pyplot as pl
n_viz = 20
num_matches = matches_im0.shape[0]
match_idx_to_viz = np.round(np.linspace(0, num_matches - 1, n_viz)).astype(int)
viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz]
image_mean = torch.as_tensor([0.5, 0.5, 0.5], device='cpu').reshape(1, 3, 1, 1)
image_std = torch.as_tensor([0.5, 0.5, 0.5], device='cpu').reshape(1, 3, 1, 1)
viz_imgs = []
for i, view in enumerate([view1, view2]):
rgb_tensor = view['img'] * image_std + image_mean
viz_imgs.append(rgb_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy())
H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2]
img0 = np.pad(viz_imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img1 = np.pad(viz_imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img = np.concatenate((img0, img1), axis=1)
pl.figure()
pl.imshow(img)
cmap = pl.get_cmap('jet')
for i in range(n_viz):
(x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T
pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False)
pl.show(block=True)
```
![matching example on croco pair](assets/matching.jpg)
## Training
In this section, we present a short demonstration to get started with training MASt3R.
### Datasets
See [Datasets section in DUSt3R](https://github.com/naver/dust3r/tree/datasets?tab=readme-ov-file#datasets)
### Demo
Like for the DUSt3R training demo, we're going to download and prepare the same subset of [CO3Dv2](https://github.com/facebookresearch/co3d) - [Creative Commons Attribution-NonCommercial 4.0 International](https://github.com/facebookresearch/co3d/blob/main/LICENSE) and launch the training code on it.
It is the exact same process as DUSt3R.
The demo model will be trained for a few epochs on a very small dataset.
It will not be very good.
```bash
# download and prepare the co3d subset
mkdir -p data/co3d_subset
cd data/co3d_subset
git clone https://github.com/facebookresearch/co3d
cd co3d
python3 ./co3d/download_dataset.py --download_folder ../ --single_sequence_subset
rm ../*.zip
cd ../../..
python3 datasets_preprocess/preprocess_co3d.py --co3d_dir data/co3d_subset --output_dir data/co3d_subset_processed --single_sequence_subset
# download the pretrained dust3r checkpoint
mkdir -p checkpoints/
wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/
# for this example we'll do fewer epochs, for the actual hyperparameters we used in the paper, see the next section: "Our Hyperparameters"
torchrun --nproc_per_node=4 train.py \
--train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop='auto', aug_monocular=0.005, aug_rot90='diff', mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], n_corres=8192, nneg=0.5, transform=ColorJitter)" \
--test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=(512,384), n_corres=1024, seed=777)" \
--model "AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True)" \
--train_criterion "ConfLoss(Regr3D(L21, norm_mode='?avg_dis'), alpha=0.2) + 0.075*ConfMatchingLoss(MatchingLoss(InfoNCE(mode='proper', temperature=0.05), negatives_padding=0, blocksize=8192), alpha=10.0, confmode='mean')" \
--test_criterion "Regr3D_ScaleShiftInv(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + -1.*MatchingLoss(APLoss(nq='torch', fp=torch.float16), negatives_padding=12288)" \
--pretrained "checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth" \
--lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 4 --accum_iter 4 \
--save_freq 1 --keep_freq 5 --eval_freq 1 \
--output_dir "checkpoints/mast3r_demo"
```
### Our Hyperparameters
We didn't release all the training datasets, but here are the commands we used for training our models:
```bash
# MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric - train mast3r with metric regression and matching loss
# we used cosxl to generate variations of DL3DV: "foggy", "night", "rainy", "snow", "sunny" but we were not convinced by it.
torchrun --nproc_per_node=8 train.py \
--train_dataset "57_000 @ Habitat512(1_000_000, split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 68_400 @ BlendedMVS(split='train', mask_sky=True, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 68_400 @ MegaDepth(split='train', mask_sky=True, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 45_600 @ ARKitScenes(split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 22_800 @ Co3d(split='train', mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 22_800 @ StaticThings3D(mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 45_600 @ ScanNetpp(split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 45_600 @ TartanAir(pairs_subset='', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 4_560 @ UnrealStereo4K(resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 1_140 @ VirtualKitti(optical_center_is_centered=True, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 22_800 @ WildRgbd(split='train', mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 145_920 @ NianticMapFree(split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 57_000 @ DL3DV(split='nlight', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 57_000 @ DL3DV(split='not-nlight', cosxl_augmentations=None, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 34_200 @ InternalUnreleasedDataset(resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5)" \
--test_dataset "Habitat512(1_000, split='val', resolution=(512,384), seed=777, n_corres=1024) + 1_000 @ BlendedMVS(split='val', resolution=(512,384), mask_sky=True, seed=777, n_corres=1024) + 1_000 @ ARKitScenes(split='test', resolution=(512,384), seed=777, n_corres=1024) + 1_000 @ MegaDepth(split='val', mask_sky=True, resolution=(512,336), seed=777, n_corres=1024) + 1_000 @ Co3d(split='test', resolution=(512,384), mask_bg='rand', seed=777, n_corres=1024)" \
--model "AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True, desc_conf_mode=('exp', 0, inf))" \
--train_criterion "ConfLoss(Regr3D(L21, norm_mode='?avg_dis'), alpha=0.2, loss_in_log=False) + 0.075*ConfMatchingLoss(MatchingLoss(InfoNCE(mode='proper', temperature=0.05), negatives_padding=0, blocksize=8192), alpha=10.0, confmode='mean')" \
--test_criterion "Regr3D(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + -1.*MatchingLoss(APLoss(nq='torch', fp=torch.float16), negatives_padding=12288)" \
--pretrained "checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth" \
--lr 0.0001 --min_lr 1e-06 --warmup_epochs 8 --epochs 50 --batch_size 4 --accum_iter 2 \
--save_freq 1 --keep_freq 5 --eval_freq 1 --print_freq=10 \
--output_dir "checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"
```
## Visual Localization
### Dataset preparation
See [Visloc section in DUSt3R](https://github.com/naver/dust3r/tree/dust3r_visloc#dataset-preparation)
### Example Commands
With `visloc.py` you can run our visual localization experiments on Aachen-Day-Night, InLoc, Cambridge Landmarks and 7 Scenes.
```bash
# Aachen-Day-Night-v1.1:
# scene in 'day' 'night'
# scene can also be 'all'
python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocAachenDayNight('/path/to/prepared/Aachen-Day-Night-v1.1/', subscene='${scene}', pairsfile='fire_top50', topk=20)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/Aachen-Day-Night-v1.1/${scene}/loc
# or with coarse to fine:
python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocAachenDayNight('/path/to/prepared/Aachen-Day-Night-v1.1/', subscene='${scene}', pairsfile='fire_top50', topk=20)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/Aachen-Day-Night-v1.1/${scene}/loc --coarse_to_fine --max_batch_size 48 --c2f_crop_with_homography
# InLoc
python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocInLoc('/path/to/prepared/InLoc/', pairsfile='pairs-query-netvlad40-temporal', topk=20)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/InLoc/loc
# or with coarse to fine:
python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocInLoc('/path/to/prepared/InLoc/', pairsfile='pairs-query-netvlad40-temporal', topk=20)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/InLoc/loc --coarse_to_fine --max_image_size 1200 --max_batch_size 48 --c2f_crop_with_homography
# 7-scenes:
# scene in 'chess' 'fire' 'heads' 'office' 'pumpkin' 'redkitchen' 'stairs'
python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocSevenScenes('/path/to/prepared/7-scenes/', subscene='${scene}', pairsfile='APGeM-LM18_top20', topk=1)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/7-scenes/${scene}/loc
# Cambridge Landmarks:
# scene in 'ShopFacade' 'GreatCourt' 'KingsCollege' 'OldHospital' 'StMarysChurch'
python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocCambridgeLandmarks('/path/to/prepared/Cambridge_Landmarks/', subscene='${scene}', pairsfile='APGeM-LM18_top20', topk=1)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/Cambridge_Landmarks/${scene}/loc
```
|