File size: 6,491 Bytes
10b4a5f
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
10b4a5f
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns


def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True):
    """Plot a set of images horizontally.
    Args:
        imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
        titles: a list of strings, as titles for each image.
        cmaps: colormaps for monochrome images.
        adaptive: whether the figure size should fit the image aspect ratios.
    """
    n = len(imgs)
    if not isinstance(cmaps, (list, tuple)):
        cmaps = [cmaps] * n

    if adaptive:
        ratios = [i.shape[1] / i.shape[0] for i in imgs]  # W / H
    else:
        ratios = [4 / 3] * n
    figsize = [sum(ratios) * 4.5, 4.5]
    fig, ax = plt.subplots(
        1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
    )
    if n == 1:
        ax = [ax]
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        ax[i].set_axis_off()
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
        if titles:
            ax[i].set_title(titles[i])
    fig.tight_layout(pad=pad)
    return ax


def plot_keypoints(kpts, colors="lime", ps=4, alpha=1):
    """Plot keypoints for existing images.
    Args:
        kpts: list of ndarrays of size (N, 2).
        colors: string, or list of list of tuples (one for each keypoints).
        ps: size of the keypoints as float.
    """
    if not isinstance(colors, list):
        colors = [colors] * len(kpts)
    axes = plt.gcf().axes
    for a, k, c in zip(axes, kpts, colors):
        a.scatter(k[:, 0], k[:, 1], c=c, s=ps, alpha=alpha, linewidths=0)


def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, indices=(0, 1), a=1.0):
    """Plot matches for a pair of existing images.
    Args:
        kpts0, kpts1: corresponding keypoints of size (N, 2).
        color: color of each match, string or RGB tuple. Random if not given.
        lw: width of the lines.
        ps: size of the end points (no endpoint if ps=0)
        indices: indices of the images to draw the matches on.
        a: alpha opacity of the match lines.
    """
    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    ax0, ax1 = ax[indices[0]], ax[indices[1]]
    fig.canvas.draw()

    assert len(kpts0) == len(kpts1)
    if color is None:
        color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist()
    elif len(color) > 0 and not isinstance(color[0], (tuple, list)):
        color = [color] * len(kpts0)

    if lw > 0:
        # transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(ax0.transData.transform(kpts0))
        fkpts1 = transFigure.transform(ax1.transData.transform(kpts1))
        fig.lines += [
            matplotlib.lines.Line2D(
                (fkpts0[i, 0], fkpts1[i, 0]),
                (fkpts0[i, 1], fkpts1[i, 1]),
                zorder=1,
                transform=fig.transFigure,
                c=color[i],
                linewidth=lw,
                alpha=a,
            )
            for i in range(len(kpts0))
        ]

    # freeze the axes to prevent the transform to change
    ax0.autoscale(enable=False)
    ax1.autoscale(enable=False)

    if ps > 0:
        ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
        ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)


def plot_lines(
    lines,
    line_colors="orange",
    point_colors="cyan",
    ps=4,
    lw=2,
    alpha=1.0,
    indices=(0, 1),
):
    """Plot lines and endpoints for existing images.
    Args:
        lines: list of ndarrays of size (N, 2, 2).
        colors: string, or list of list of tuples (one for each keypoints).
        ps: size of the keypoints as float pixels.
        lw: line width as float pixels.
        alpha: transparency of the points and lines.
        indices: indices of the images to draw the matches on.
    """
    if not isinstance(line_colors, list):
        line_colors = [line_colors] * len(lines)
    if not isinstance(point_colors, list):
        point_colors = [point_colors] * len(lines)

    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    axes = [ax[i] for i in indices]
    fig.canvas.draw()

    # Plot the lines and junctions
    for a, l, lc, pc in zip(axes, lines, line_colors, point_colors):
        for i in range(len(l)):
            line = matplotlib.lines.Line2D(
                (l[i, 0, 0], l[i, 1, 0]),
                (l[i, 0, 1], l[i, 1, 1]),
                zorder=1,
                c=lc,
                linewidth=lw,
                alpha=alpha,
            )
            a.add_line(line)
        pts = l.reshape(-1, 2)
        a.scatter(pts[:, 0], pts[:, 1], c=pc, s=ps, linewidths=0, zorder=2, alpha=alpha)


def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)):
    """Plot line matches for existing images with multiple colors.
    Args:
        lines: list of ndarrays of size (N, 2, 2).
        correct_matches: bool array of size (N,) indicating correct matches.
        lw: line width as float pixels.
        indices: indices of the images to draw the matches on.
    """
    n_lines = len(lines[0])
    colors = sns.color_palette("husl", n_colors=n_lines)
    np.random.shuffle(colors)
    alphas = np.ones(n_lines)
    # If correct_matches is not None, display wrong matches with a low alpha
    if correct_matches is not None:
        alphas[~np.array(correct_matches)] = 0.2

    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    axes = [ax[i] for i in indices]
    fig.canvas.draw()

    # Plot the lines
    for a, l in zip(axes, lines):
        # Transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
        endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
        fig.lines += [
            matplotlib.lines.Line2D(
                (endpoint0[i, 0], endpoint1[i, 0]),
                (endpoint0[i, 1], endpoint1[i, 1]),
                zorder=1,
                transform=fig.transFigure,
                c=colors[i],
                alpha=alphas[i],
                linewidth=lw,
            )
            for i in range(n_lines)
        ]