Spaces:
Running
Running
File size: 8,472 Bytes
10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.einops import rearrange
INF = 1e9
def mask_border(m, b: int, v):
"""Mask borders with value
Args:
m (torch.Tensor): [N, H0, W0, H1, W1]
b (int)
v (m.dtype)
"""
if b <= 0:
return
m[:, :b] = v
m[:, :, :b] = v
m[:, :, :, :b] = v
m[:, :, :, :, :b] = v
m[:, -b:] = v
m[:, :, -b:] = v
m[:, :, :, -b:] = v
m[:, :, :, :, -b:] = v
def mask_border_with_padding(m, bd, v, p_m0, p_m1):
if bd <= 0:
return
m[:, :bd] = v
m[:, :, :bd] = v
m[:, :, :, :bd] = v
m[:, :, :, :, :bd] = v
h0s, w0s = p_m0.sum(1).max(-1)[0].int(), p_m0.sum(-1).max(-1)[0].int()
h1s, w1s = p_m1.sum(1).max(-1)[0].int(), p_m1.sum(-1).max(-1)[0].int()
for b_idx, (h0, w0, h1, w1) in enumerate(zip(h0s, w0s, h1s, w1s)):
m[b_idx, h0 - bd :] = v
m[b_idx, :, w0 - bd :] = v
m[b_idx, :, :, h1 - bd :] = v
m[b_idx, :, :, :, w1 - bd :] = v
def compute_max_candidates(p_m0, p_m1):
"""Compute the max candidates of all pairs within a batch
Args:
p_m0, p_m1 (torch.Tensor): padded masks
"""
h0s, w0s = p_m0.sum(1).max(-1)[0], p_m0.sum(-1).max(-1)[0]
h1s, w1s = p_m1.sum(1).max(-1)[0], p_m1.sum(-1).max(-1)[0]
max_cand = torch.sum(torch.min(torch.stack([h0s * w0s, h1s * w1s], -1), -1)[0])
return max_cand
class CoarseMatching(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# general config
self.thr = config["thr"]
self.border_rm = config["border_rm"]
# -- # for trainig fine-level LoFTR
self.train_coarse_percent = config["train_coarse_percent"]
self.train_pad_num_gt_min = config["train_pad_num_gt_min"]
# we provide 2 options for differentiable matching
self.match_type = config["match_type"]
if self.match_type == "dual_softmax":
self.temperature = config["dsmax_temperature"]
elif self.match_type == "sinkhorn":
try:
from .superglue import log_optimal_transport
except ImportError:
raise ImportError("download superglue.py first!")
self.log_optimal_transport = log_optimal_transport
self.bin_score = nn.Parameter(
torch.tensor(config["skh_init_bin_score"], requires_grad=True)
)
self.skh_iters = config["skh_iters"]
self.skh_prefilter = config["skh_prefilter"]
else:
raise NotImplementedError()
def forward(self, data):
"""
Args:
data (dict)
Update:
data (dict): {
'b_ids' (torch.Tensor): [M'],
'i_ids' (torch.Tensor): [M'],
'j_ids' (torch.Tensor): [M'],
'gt_mask' (torch.Tensor): [M'],
'mkpts0_c' (torch.Tensor): [M, 2],
'mkpts1_c' (torch.Tensor): [M, 2],
'mconf' (torch.Tensor): [M]}
NOTE: M' != M during training.
"""
conf_matrix = data["conf_matrix"]
# predict coarse matches from conf_matrix
data.update(**self.get_coarse_match(conf_matrix, data))
@torch.no_grad()
def get_coarse_match(self, conf_matrix, data):
"""
Args:
conf_matrix (torch.Tensor): [N, L, S]
data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c']
Returns:
coarse_matches (dict): {
'b_ids' (torch.Tensor): [M'],
'i_ids' (torch.Tensor): [M'],
'j_ids' (torch.Tensor): [M'],
'gt_mask' (torch.Tensor): [M'],
'm_bids' (torch.Tensor): [M],
'mkpts0_c' (torch.Tensor): [M, 2],
'mkpts1_c' (torch.Tensor): [M, 2],
'mconf' (torch.Tensor): [M]}
"""
axes_lengths = {
"h0c": data["hw0_c"][0],
"w0c": data["hw0_c"][1],
"h1c": data["hw1_c"][0],
"w1c": data["hw1_c"][1],
}
_device = conf_matrix.device
# 1. confidence thresholding
mask = conf_matrix > self.thr
mask = rearrange(
mask, "b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c", **axes_lengths
)
if "mask0" not in data:
mask_border(mask, self.border_rm, False)
else:
mask_border_with_padding(
mask, self.border_rm, False, data["mask0"], data["mask1"]
)
mask = rearrange(
mask, "b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)", **axes_lengths
)
# 2. mutual nearest
mask = (
mask
* (conf_matrix == conf_matrix.max(dim=2, keepdim=True)[0])
* (conf_matrix == conf_matrix.max(dim=1, keepdim=True)[0])
)
# 3. find all valid coarse matches
# this only works when at most one `True` in each row
mask_v, all_j_ids = mask.max(dim=2)
b_ids, i_ids = torch.where(mask_v)
j_ids = all_j_ids[b_ids, i_ids]
mconf = conf_matrix[b_ids, i_ids, j_ids]
# 4. Random sampling of training samples for fine-level LoFTR
# (optional) pad samples with gt coarse-level matches
if self.training:
# NOTE:
# The sampling is performed across all pairs in a batch without manually balancing
# #samples for fine-level increases w.r.t. batch_size
if "mask0" not in data:
num_candidates_max = mask.size(0) * max(mask.size(1), mask.size(2))
else:
num_candidates_max = compute_max_candidates(
data["mask0"], data["mask1"]
)
num_matches_train = int(num_candidates_max * self.train_coarse_percent)
num_matches_pred = len(b_ids)
assert (
self.train_pad_num_gt_min < num_matches_train
), "min-num-gt-pad should be less than num-train-matches"
# pred_indices is to select from prediction
if num_matches_pred <= num_matches_train - self.train_pad_num_gt_min:
pred_indices = torch.arange(num_matches_pred, device=_device)
else:
pred_indices = torch.randint(
num_matches_pred,
(num_matches_train - self.train_pad_num_gt_min,),
device=_device,
)
# gt_pad_indices is to select from gt padding. e.g. max(3787-4800, 200)
gt_pad_indices = torch.randint(
len(data["spv_b_ids"]),
(max(num_matches_train - num_matches_pred, self.train_pad_num_gt_min),),
device=_device,
)
mconf_gt = torch.zeros(
len(data["spv_b_ids"]), device=_device
) # set conf of gt paddings to all zero
b_ids, i_ids, j_ids, mconf = map(
lambda x, y: torch.cat([x[pred_indices], y[gt_pad_indices]], dim=0),
*zip(
[b_ids, data["spv_b_ids"]],
[i_ids, data["spv_i_ids"]],
[j_ids, data["spv_j_ids"]],
[mconf, mconf_gt],
)
)
# These matches select patches that feed into fine-level network
coarse_matches = {"b_ids": b_ids, "i_ids": i_ids, "j_ids": j_ids}
# 4. Update with matches in original image resolution
scale = data["hw0_i"][0] / data["hw0_c"][0]
scale0 = scale * data["scale0"][b_ids] if "scale0" in data else scale
scale1 = scale * data["scale1"][b_ids] if "scale1" in data else scale
mkpts0_c = (
torch.stack([i_ids % data["hw0_c"][1], i_ids // data["hw0_c"][1]], dim=1)
* scale0
)
mkpts1_c = (
torch.stack([j_ids % data["hw1_c"][1], j_ids // data["hw1_c"][1]], dim=1)
* scale1
)
# These matches is the current prediction (for visualization)
coarse_matches.update(
{
"gt_mask": mconf == 0,
"m_bids": b_ids[mconf != 0], # mconf == 0 => gt matches
"mkpts0_c": mkpts0_c[mconf != 0],
"mkpts1_c": mkpts1_c[mconf != 0],
"mconf": mconf[mconf != 0],
}
)
return coarse_matches
|