Spaces:
Running
Running
File size: 2,816 Bytes
10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.einops import rearrange, repeat
class FinePreprocess(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.cat_c_feat = config["fine_concat_coarse_feat"]
self.W = self.config["fine_window_size"]
d_model_c = self.config["coarse"]["d_model"]
d_model_f = self.config["fine"]["d_model"]
self.d_model_f = d_model_f
if self.cat_c_feat:
self.down_proj = nn.Linear(d_model_c, d_model_f, bias=True)
self.merge_feat = nn.Linear(2 * d_model_f, d_model_f, bias=True)
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.kaiming_normal_(p, mode="fan_out", nonlinearity="relu")
def forward(self, feat_f0, feat_f1, feat_c0, feat_c1, data):
W = self.W
stride = data["hw0_f"][0] // data["hw0_c"][0]
data.update({"W": W})
if data["b_ids"].shape[0] == 0:
feat0 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device)
feat1 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device)
return feat0, feat1
# 1. unfold(crop) all local windows
feat_f0_unfold = F.unfold(
feat_f0, kernel_size=(W, W), stride=stride, padding=W // 2
)
feat_f0_unfold = rearrange(feat_f0_unfold, "n (c ww) l -> n l ww c", ww=W**2)
feat_f1_unfold = F.unfold(
feat_f1, kernel_size=(W, W), stride=stride, padding=W // 2
)
feat_f1_unfold = rearrange(feat_f1_unfold, "n (c ww) l -> n l ww c", ww=W**2)
# 2. select only the predicted matches
feat_f0_unfold = feat_f0_unfold[data["b_ids"], data["i_ids"]] # [n, ww, cf]
feat_f1_unfold = feat_f1_unfold[data["b_ids"], data["j_ids"]]
# option: use coarse-level feature as context: concat and linear
if self.cat_c_feat:
feat_c_win = self.down_proj(
torch.cat(
[
feat_c0[data["b_ids"], data["i_ids"]],
feat_c1[data["b_ids"], data["j_ids"]],
],
0,
)
) # [2n, c]
feat_cf_win = self.merge_feat(
torch.cat(
[
torch.cat([feat_f0_unfold, feat_f1_unfold], 0), # [2n, ww, cf]
repeat(feat_c_win, "n c -> n ww c", ww=W**2), # [2n, ww, cf]
],
-1,
)
)
feat_f0_unfold, feat_f1_unfold = torch.chunk(feat_cf_win, 2, dim=0)
return feat_f0_unfold, feat_f1_unfold
|