File size: 4,853 Bytes
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
10b4a5f
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
358ab8f
 
 
 
 
 
10b4a5f
 
 
358ab8f
 
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from argparse import Namespace
import os, sys
import torch
import cv2
from pathlib import Path

from .base import Viz
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors

patch2pix_path = Path(__file__).parent / "../../third_party/patch2pix"
sys.path.append(str(patch2pix_path))
from third_party.patch2pix.utils.eval.model_helper import load_model, estimate_matches


class VizPatch2Pix(Viz):
    def __init__(self, args):
        super().__init__()

        if type(args) == dict:
            args = Namespace(**args)
        self.imsize = args.imsize
        self.match_threshold = args.match_threshold
        self.ksize = args.ksize
        self.model = load_model(args.ckpt, method="patch2pix")
        self.name = "Patch2Pix"
        print(f"Initialize {self.name} with image size {self.imsize}")

    def match_and_draw(
        self,
        data_dict,
        root_dir=None,
        ground_truth=False,
        measure_time=False,
        viz_matches=True,
    ):
        img_name0, img_name1 = list(zip(*data_dict["pair_names"]))[0]
        path_img0 = os.path.join(root_dir, img_name0)
        path_img1 = os.path.join(root_dir, img_name1)
        img0, img1 = cv2.imread(path_img0), cv2.imread(path_img1)
        return_m_upscale = True
        if str(data_dict["dataset_name"][0]).lower() == "scannet":
            # self.imsize = 640
            img0 = cv2.resize(img0, tuple(self.imsize))  # (640, 480))
            img1 = cv2.resize(img1, tuple(self.imsize))  # (640, 480))
            return_m_upscale = False
        outputs = estimate_matches(
            self.model,
            path_img0,
            path_img1,
            ksize=self.ksize,
            io_thres=self.match_threshold,
            eval_type="fine",
            imsize=self.imsize,
            return_upscale=return_m_upscale,
            measure_time=measure_time,
        )
        if measure_time:
            self.time_stats.append(outputs[-1])
        matches, mconf = outputs[0], outputs[1]
        kpts0 = matches[:, :2]
        kpts1 = matches[:, 2:4]

        if viz_matches:
            saved_name = "_".join(
                [
                    img_name0.split("/")[-1].split(".")[0],
                    img_name1.split("/")[-1].split(".")[0],
                ]
            )
            folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name))
            if not os.path.exists(folder_matches):
                os.makedirs(folder_matches)
            path_to_save_matches = os.path.join(
                folder_matches, "{}.png".format(saved_name)
            )

            if ground_truth:
                data_dict["mkpts0_f"] = (
                    torch.from_numpy(matches[:, :2]).float().to(self.device)
                )
                data_dict["mkpts1_f"] = (
                    torch.from_numpy(matches[:, 2:4]).float().to(self.device)
                )
                data_dict["m_bids"] = torch.zeros(
                    matches.shape[0], device=self.device, dtype=torch.float32
                )
                compute_symmetrical_epipolar_errors(
                    data_dict
                )  # compute epi_errs for each match
                compute_pose_errors(
                    data_dict
                )  # compute R_errs, t_errs, pose_errs for each pair
                epi_errors = data_dict["epi_errs"].cpu().numpy()
                R_errors, t_errors = data_dict["R_errs"][0], data_dict["t_errs"][0]

                self.draw_matches(
                    kpts0,
                    kpts1,
                    img0,
                    img1,
                    epi_errors,
                    path=path_to_save_matches,
                    R_errs=R_errors,
                    t_errs=t_errors,
                )

                rel_pair_names = list(zip(*data_dict["pair_names"]))
                bs = data_dict["image0"].size(0)
                metrics = {
                    # to filter duplicate pairs caused by DistributedSampler
                    "identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)],
                    "epi_errs": [
                        data_dict["epi_errs"][data_dict["m_bids"] == b].cpu().numpy()
                        for b in range(bs)
                    ],
                    "R_errs": data_dict["R_errs"],
                    "t_errs": data_dict["t_errs"],
                    "inliers": data_dict["inliers"],
                }
                self.eval_stats.append({"metrics": metrics})
            else:
                m_conf = 1 - mconf
                self.draw_matches(
                    kpts0,
                    kpts1,
                    img0,
                    img1,
                    m_conf,
                    path=path_to_save_matches,
                    conf_thr=0.4,
                )