Spaces:
Running
Running
File size: 8,030 Bytes
c0283b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from typing import Union
import albumentations as A
import cv2
import numpy as np
import torch
from albumentations.pytorch.transforms import ToTensorV2
from omegaconf import OmegaConf
class IdentityTransform(A.ImageOnlyTransform):
def apply(self, img, **params):
return img
def get_transform_init_args_names(self):
return ()
class RandomAdditiveShade(A.ImageOnlyTransform):
def __init__(
self,
nb_ellipses=10,
transparency_limit=[-0.5, 0.8],
kernel_size_limit=[150, 350],
always_apply=False,
p=0.5,
):
super().__init__(always_apply, p)
self.nb_ellipses = nb_ellipses
self.transparency_limit = transparency_limit
self.kernel_size_limit = kernel_size_limit
def apply(self, img, **params):
if img.dtype == np.float32:
shaded = self._py_additive_shade(img * 255.0)
shaded /= 255.0
elif img.dtype == np.uint8:
shaded = self._py_additive_shade(img.astype(np.float32))
shaded = shaded.astype(np.uint8)
else:
raise NotImplementedError(
f"Data augmentation not available for type: {img.dtype}"
)
return shaded
def _py_additive_shade(self, img):
grayscale = len(img.shape) == 2
if grayscale:
img = img[None]
min_dim = min(img.shape[:2]) / 4
mask = np.zeros(img.shape[:2], img.dtype)
for i in range(self.nb_ellipses):
ax = int(max(np.random.rand() * min_dim, min_dim / 5))
ay = int(max(np.random.rand() * min_dim, min_dim / 5))
max_rad = max(ax, ay)
x = np.random.randint(max_rad, img.shape[1] - max_rad) # center
y = np.random.randint(max_rad, img.shape[0] - max_rad)
angle = np.random.rand() * 90
cv2.ellipse(mask, (x, y), (ax, ay), angle, 0, 360, 255, -1)
transparency = np.random.uniform(*self.transparency_limit)
ks = np.random.randint(*self.kernel_size_limit)
if (ks % 2) == 0: # kernel_size has to be odd
ks += 1
mask = cv2.GaussianBlur(mask.astype(np.float32), (ks, ks), 0)
shaded = img * (1 - transparency * mask[..., np.newaxis] / 255.0)
out = np.clip(shaded, 0, 255)
if grayscale:
out = out.squeeze(0)
return out
def get_transform_init_args_names(self):
return "transparency_limit", "kernel_size_limit", "nb_ellipses"
def kw(entry: Union[float, dict], n=None, **default):
if not isinstance(entry, dict):
entry = {"p": entry}
entry = OmegaConf.create(entry)
if n is not None:
entry = default.get(n, entry)
return OmegaConf.merge(default, entry)
def kwi(entry: Union[float, dict], n=None, **default):
conf = kw(entry, n=n, **default)
return {k: conf[k] for k in set(default.keys()).union(set(["p"]))}
def replay_str(transforms, s="Replay:\n", log_inactive=True):
for t in transforms:
if "transforms" in t.keys():
s = replay_str(t["transforms"], s=s)
elif t["applied"] or log_inactive:
s += t["__class_fullname__"] + " " + str(t["applied"]) + "\n"
return s
class BaseAugmentation(object):
base_default_conf = {
"name": "???",
"shuffle": False,
"p": 1.0,
"verbose": False,
"dtype": "uint8", # (byte, float)
}
default_conf = {}
def __init__(self, conf={}):
"""Perform some logic and call the _init method of the child model."""
default_conf = OmegaConf.merge(
OmegaConf.create(self.base_default_conf),
OmegaConf.create(self.default_conf),
)
OmegaConf.set_struct(default_conf, True)
if isinstance(conf, dict):
conf = OmegaConf.create(conf)
self.conf = OmegaConf.merge(default_conf, conf)
OmegaConf.set_readonly(self.conf, True)
self._init(self.conf)
self.conf = OmegaConf.merge(self.conf, conf)
if self.conf.verbose:
self.compose = A.ReplayCompose
else:
self.compose = A.Compose
if self.conf.dtype == "uint8":
self.dtype = np.uint8
self.preprocess = A.FromFloat(always_apply=True, dtype="uint8")
self.postprocess = A.ToFloat(always_apply=True)
elif self.conf.dtype == "float32":
self.dtype = np.float32
self.preprocess = A.ToFloat(always_apply=True)
self.postprocess = IdentityTransform()
else:
raise ValueError(f"Unsupported dtype {self.conf.dtype}")
self.to_tensor = ToTensorV2()
def _init(self, conf):
"""Child class overwrites this, setting up a list of transforms"""
self.transforms = []
def __call__(self, image, return_tensor=False):
"""image as HW or HWC"""
if isinstance(image, torch.Tensor):
image = image.cpu().detach().numpy()
data = {"image": image}
if image.dtype != self.dtype:
data = self.preprocess(**data)
transforms = self.transforms
if self.conf.shuffle:
order = [i for i, _ in enumerate(transforms)]
np.random.shuffle(order)
transforms = [transforms[i] for i in order]
transformed = self.compose(transforms, p=self.conf.p)(**data)
if self.conf.verbose:
print(replay_str(transformed["replay"]["transforms"]))
transformed = self.postprocess(**transformed)
if return_tensor:
return self.to_tensor(**transformed)["image"]
else:
return transformed["image"]
class IdentityAugmentation(BaseAugmentation):
default_conf = {}
def _init(self, conf):
self.transforms = [IdentityTransform(p=1.0)]
class DarkAugmentation(BaseAugmentation):
default_conf = {"p": 0.75}
def _init(self, conf):
bright_contr = 0.5
blur = 0.1
random_gamma = 0.1
hue = 0.1
self.transforms = [
A.RandomRain(p=0.2),
A.RandomBrightnessContrast(
**kw(
bright_contr,
brightness_limit=(-0.4, 0.0),
contrast_limit=(-0.3, 0.0),
)
),
A.OneOf(
[
A.Blur(**kwi(blur, p=0.1, blur_limit=(3, 9), n="blur")),
A.MotionBlur(
**kwi(blur, p=0.2, blur_limit=(3, 25), n="motion_blur")
),
A.ISONoise(),
A.ImageCompression(),
],
**kwi(blur, p=0.1),
),
A.RandomGamma(**kw(random_gamma, gamma_limit=(15, 65))),
A.OneOf(
[
A.Equalize(),
A.CLAHE(p=0.2),
A.ToGray(),
A.ToSepia(p=0.1),
A.HueSaturationValue(**kw(hue, val_shift_limit=(-100, -40))),
],
p=0.5,
),
]
class LGAugmentation(BaseAugmentation):
default_conf = {"p": 0.95}
def _init(self, conf):
self.transforms = [
A.RandomGamma(p=0.1, gamma_limit=(15, 65)),
A.HueSaturationValue(p=0.1, val_shift_limit=(-100, -40)),
A.OneOf(
[
A.Blur(blur_limit=(3, 9)),
A.MotionBlur(blur_limit=(3, 25)),
A.ISONoise(),
A.ImageCompression(),
],
p=0.1,
),
A.Blur(p=0.1, blur_limit=(3, 9)),
A.MotionBlur(p=0.1, blur_limit=(3, 25)),
A.RandomBrightnessContrast(
p=0.5, brightness_limit=(-0.4, 0.0), contrast_limit=(-0.3, 0.0)
),
A.CLAHE(p=0.2),
]
augmentations = {
"dark": DarkAugmentation,
"lg": LGAugmentation,
"identity": IdentityAugmentation,
}
|