File size: 8,030 Bytes
c0283b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from typing import Union

import albumentations as A
import cv2
import numpy as np
import torch
from albumentations.pytorch.transforms import ToTensorV2
from omegaconf import OmegaConf


class IdentityTransform(A.ImageOnlyTransform):
    def apply(self, img, **params):
        return img

    def get_transform_init_args_names(self):
        return ()


class RandomAdditiveShade(A.ImageOnlyTransform):
    def __init__(
        self,
        nb_ellipses=10,
        transparency_limit=[-0.5, 0.8],
        kernel_size_limit=[150, 350],
        always_apply=False,
        p=0.5,
    ):
        super().__init__(always_apply, p)
        self.nb_ellipses = nb_ellipses
        self.transparency_limit = transparency_limit
        self.kernel_size_limit = kernel_size_limit

    def apply(self, img, **params):
        if img.dtype == np.float32:
            shaded = self._py_additive_shade(img * 255.0)
            shaded /= 255.0
        elif img.dtype == np.uint8:
            shaded = self._py_additive_shade(img.astype(np.float32))
            shaded = shaded.astype(np.uint8)
        else:
            raise NotImplementedError(
                f"Data augmentation not available for type: {img.dtype}"
            )
        return shaded

    def _py_additive_shade(self, img):
        grayscale = len(img.shape) == 2
        if grayscale:
            img = img[None]
        min_dim = min(img.shape[:2]) / 4
        mask = np.zeros(img.shape[:2], img.dtype)
        for i in range(self.nb_ellipses):
            ax = int(max(np.random.rand() * min_dim, min_dim / 5))
            ay = int(max(np.random.rand() * min_dim, min_dim / 5))
            max_rad = max(ax, ay)
            x = np.random.randint(max_rad, img.shape[1] - max_rad)  # center
            y = np.random.randint(max_rad, img.shape[0] - max_rad)
            angle = np.random.rand() * 90
            cv2.ellipse(mask, (x, y), (ax, ay), angle, 0, 360, 255, -1)

        transparency = np.random.uniform(*self.transparency_limit)
        ks = np.random.randint(*self.kernel_size_limit)
        if (ks % 2) == 0:  # kernel_size has to be odd
            ks += 1
        mask = cv2.GaussianBlur(mask.astype(np.float32), (ks, ks), 0)
        shaded = img * (1 - transparency * mask[..., np.newaxis] / 255.0)
        out = np.clip(shaded, 0, 255)
        if grayscale:
            out = out.squeeze(0)
        return out

    def get_transform_init_args_names(self):
        return "transparency_limit", "kernel_size_limit", "nb_ellipses"


def kw(entry: Union[float, dict], n=None, **default):
    if not isinstance(entry, dict):
        entry = {"p": entry}
    entry = OmegaConf.create(entry)
    if n is not None:
        entry = default.get(n, entry)
    return OmegaConf.merge(default, entry)


def kwi(entry: Union[float, dict], n=None, **default):
    conf = kw(entry, n=n, **default)
    return {k: conf[k] for k in set(default.keys()).union(set(["p"]))}


def replay_str(transforms, s="Replay:\n", log_inactive=True):
    for t in transforms:
        if "transforms" in t.keys():
            s = replay_str(t["transforms"], s=s)
        elif t["applied"] or log_inactive:
            s += t["__class_fullname__"] + " " + str(t["applied"]) + "\n"
    return s


class BaseAugmentation(object):
    base_default_conf = {
        "name": "???",
        "shuffle": False,
        "p": 1.0,
        "verbose": False,
        "dtype": "uint8",  # (byte, float)
    }

    default_conf = {}

    def __init__(self, conf={}):
        """Perform some logic and call the _init method of the child model."""
        default_conf = OmegaConf.merge(
            OmegaConf.create(self.base_default_conf),
            OmegaConf.create(self.default_conf),
        )
        OmegaConf.set_struct(default_conf, True)
        if isinstance(conf, dict):
            conf = OmegaConf.create(conf)
        self.conf = OmegaConf.merge(default_conf, conf)
        OmegaConf.set_readonly(self.conf, True)
        self._init(self.conf)

        self.conf = OmegaConf.merge(self.conf, conf)
        if self.conf.verbose:
            self.compose = A.ReplayCompose
        else:
            self.compose = A.Compose
        if self.conf.dtype == "uint8":
            self.dtype = np.uint8
            self.preprocess = A.FromFloat(always_apply=True, dtype="uint8")
            self.postprocess = A.ToFloat(always_apply=True)
        elif self.conf.dtype == "float32":
            self.dtype = np.float32
            self.preprocess = A.ToFloat(always_apply=True)
            self.postprocess = IdentityTransform()
        else:
            raise ValueError(f"Unsupported dtype {self.conf.dtype}")
        self.to_tensor = ToTensorV2()

    def _init(self, conf):
        """Child class overwrites this, setting up a list of transforms"""
        self.transforms = []

    def __call__(self, image, return_tensor=False):
        """image as HW or HWC"""
        if isinstance(image, torch.Tensor):
            image = image.cpu().detach().numpy()
        data = {"image": image}
        if image.dtype != self.dtype:
            data = self.preprocess(**data)
        transforms = self.transforms
        if self.conf.shuffle:
            order = [i for i, _ in enumerate(transforms)]
            np.random.shuffle(order)
            transforms = [transforms[i] for i in order]
        transformed = self.compose(transforms, p=self.conf.p)(**data)
        if self.conf.verbose:
            print(replay_str(transformed["replay"]["transforms"]))
        transformed = self.postprocess(**transformed)
        if return_tensor:
            return self.to_tensor(**transformed)["image"]
        else:
            return transformed["image"]


class IdentityAugmentation(BaseAugmentation):
    default_conf = {}

    def _init(self, conf):
        self.transforms = [IdentityTransform(p=1.0)]


class DarkAugmentation(BaseAugmentation):
    default_conf = {"p": 0.75}

    def _init(self, conf):
        bright_contr = 0.5
        blur = 0.1
        random_gamma = 0.1
        hue = 0.1
        self.transforms = [
            A.RandomRain(p=0.2),
            A.RandomBrightnessContrast(
                **kw(
                    bright_contr,
                    brightness_limit=(-0.4, 0.0),
                    contrast_limit=(-0.3, 0.0),
                )
            ),
            A.OneOf(
                [
                    A.Blur(**kwi(blur, p=0.1, blur_limit=(3, 9), n="blur")),
                    A.MotionBlur(
                        **kwi(blur, p=0.2, blur_limit=(3, 25), n="motion_blur")
                    ),
                    A.ISONoise(),
                    A.ImageCompression(),
                ],
                **kwi(blur, p=0.1),
            ),
            A.RandomGamma(**kw(random_gamma, gamma_limit=(15, 65))),
            A.OneOf(
                [
                    A.Equalize(),
                    A.CLAHE(p=0.2),
                    A.ToGray(),
                    A.ToSepia(p=0.1),
                    A.HueSaturationValue(**kw(hue, val_shift_limit=(-100, -40))),
                ],
                p=0.5,
            ),
        ]


class LGAugmentation(BaseAugmentation):
    default_conf = {"p": 0.95}

    def _init(self, conf):
        self.transforms = [
            A.RandomGamma(p=0.1, gamma_limit=(15, 65)),
            A.HueSaturationValue(p=0.1, val_shift_limit=(-100, -40)),
            A.OneOf(
                [
                    A.Blur(blur_limit=(3, 9)),
                    A.MotionBlur(blur_limit=(3, 25)),
                    A.ISONoise(),
                    A.ImageCompression(),
                ],
                p=0.1,
            ),
            A.Blur(p=0.1, blur_limit=(3, 9)),
            A.MotionBlur(p=0.1, blur_limit=(3, 25)),
            A.RandomBrightnessContrast(
                p=0.5, brightness_limit=(-0.4, 0.0), contrast_limit=(-0.3, 0.0)
            ),
            A.CLAHE(p=0.2),
        ]


augmentations = {
    "dark": DarkAugmentation,
    "lg": LGAugmentation,
    "identity": IdentityAugmentation,
}