File size: 3,088 Bytes
c0283b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
Simply load images from a folder or nested folders (does not have any split).
"""

from pathlib import Path

import numpy as np
import torch

from ..geometry.wrappers import Camera, Pose
from ..settings import DATA_PATH
from ..utils.image import ImagePreprocessor, load_image
from .base_dataset import BaseDataset


def names_to_pair(name0, name1, separator="/"):
    return separator.join((name0.replace("/", "-"), name1.replace("/", "-")))


def parse_homography(homography_elems) -> Camera:
    return (
        np.array([float(x) for x in homography_elems[:9]])
        .reshape(3, 3)
        .astype(np.float32)
    )


def parse_camera(calib_elems) -> Camera:
    # assert len(calib_list) == 9
    K = np.array([float(x) for x in calib_elems[:9]]).reshape(3, 3).astype(np.float32)
    return Camera.from_calibration_matrix(K)


def parse_relative_pose(pose_elems) -> Pose:
    # assert len(calib_list) == 9
    R, t = pose_elems[:9], pose_elems[9:12]
    R = np.array([float(x) for x in R]).reshape(3, 3).astype(np.float32)
    t = np.array([float(x) for x in t]).astype(np.float32)
    return Pose.from_Rt(R, t)


class ImagePairs(BaseDataset, torch.utils.data.Dataset):
    default_conf = {
        "pairs": "???",  # ToDo: add image folder interface
        "root": "???",
        "preprocessing": ImagePreprocessor.default_conf,
        "extra_data": None,  # relative_pose, homography
    }

    def _init(self, conf):
        pair_f = (
            Path(conf.pairs) if Path(conf.pairs).exists() else DATA_PATH / conf.pairs
        )
        with open(str(pair_f), "r") as f:
            self.items = [line.rstrip() for line in f]
        self.preprocessor = ImagePreprocessor(conf.preprocessing)

    def get_dataset(self, split):
        return self

    def _read_view(self, name):
        path = DATA_PATH / self.conf.root / name
        img = load_image(path)
        return self.preprocessor(img)

    def __getitem__(self, idx):
        line = self.items[idx]
        pair_data = line.split(" ")
        name0, name1 = pair_data[:2]
        data0 = self._read_view(name0)
        data1 = self._read_view(name1)

        data = {
            "view0": data0,
            "view1": data1,
        }
        if self.conf.extra_data == "relative_pose":
            data["view0"]["camera"] = parse_camera(pair_data[2:11]).scale(
                data0["scales"]
            )
            data["view1"]["camera"] = parse_camera(pair_data[11:20]).scale(
                data1["scales"]
            )
            data["T_0to1"] = parse_relative_pose(pair_data[20:32])
        elif self.conf.extra_data == "homography":
            data["H_0to1"] = (
                data1["transform"]
                @ parse_homography(pair_data[2:11])
                @ np.linalg.inv(data0["transform"])
            )
        else:
            assert (
                self.conf.extra_data is None
            ), f"Unknown extra data format {self.conf.extra_data}"

        data["name"] = names_to_pair(name0, name1)
        return data

    def __len__(self):
        return len(self.items)