Spaces:
Running
Running
File size: 20,292 Bytes
c0283b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import argparse
import logging
import shutil
import tarfile
from collections.abc import Iterable
from pathlib import Path
import h5py
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
import torch
from omegaconf import OmegaConf
from ..geometry.wrappers import Camera, Pose
from ..models.cache_loader import CacheLoader
from ..settings import DATA_PATH
from ..utils.image import ImagePreprocessor, load_image
from ..utils.tools import fork_rng
from ..visualization.viz2d import plot_heatmaps, plot_image_grid
from .base_dataset import BaseDataset
from .utils import rotate_intrinsics, rotate_pose_inplane, scale_intrinsics
logger = logging.getLogger(__name__)
scene_lists_path = Path(__file__).parent / "megadepth_scene_lists"
def sample_n(data, num, seed=None):
if len(data) > num:
selected = np.random.RandomState(seed).choice(len(data), num, replace=False)
return data[selected]
else:
return data
class MegaDepth(BaseDataset):
default_conf = {
# paths
"data_dir": "megadepth/",
"depth_subpath": "depth_undistorted/",
"image_subpath": "Undistorted_SfM/",
"info_dir": "scene_info/", # @TODO: intrinsics problem?
# Training
"train_split": "train_scenes_clean.txt",
"train_num_per_scene": 500,
# Validation
"val_split": "valid_scenes_clean.txt",
"val_num_per_scene": None,
"val_pairs": None,
# Test
"test_split": "test_scenes_clean.txt",
"test_num_per_scene": None,
"test_pairs": None,
# data sampling
"views": 2,
"min_overlap": 0.3, # only with D2-Net format
"max_overlap": 1.0, # only with D2-Net format
"num_overlap_bins": 1,
"sort_by_overlap": False,
"triplet_enforce_overlap": False, # only with views==3
# image options
"read_depth": True,
"read_image": True,
"grayscale": False,
"preprocessing": ImagePreprocessor.default_conf,
"p_rotate": 0.0, # probability to rotate image by +/- 90°
"reseed": False,
"seed": 0,
# features from cache
"load_features": {
"do": False,
**CacheLoader.default_conf,
"collate": False,
},
}
def _init(self, conf):
if not (DATA_PATH / conf.data_dir).exists():
logger.info("Downloading the MegaDepth dataset.")
self.download()
def download(self):
data_dir = DATA_PATH / self.conf.data_dir
tmp_dir = data_dir.parent / "megadepth_tmp"
if tmp_dir.exists(): # The previous download failed.
shutil.rmtree(tmp_dir)
tmp_dir.mkdir(exist_ok=True, parents=True)
url_base = "https://cvg-data.inf.ethz.ch/megadepth/"
for tar_name, out_name in (
("Undistorted_SfM.tar.gz", self.conf.image_subpath),
("depth_undistorted.tar.gz", self.conf.depth_subpath),
("scene_info.tar.gz", self.conf.info_dir),
):
tar_path = tmp_dir / tar_name
torch.hub.download_url_to_file(url_base + tar_name, tar_path)
with tarfile.open(tar_path) as tar:
tar.extractall(path=tmp_dir)
tar_path.unlink()
shutil.move(tmp_dir / tar_name.split(".")[0], tmp_dir / out_name)
shutil.move(tmp_dir, data_dir)
def get_dataset(self, split):
assert self.conf.views in [1, 2, 3]
if self.conf.views == 3:
return _TripletDataset(self.conf, split)
else:
return _PairDataset(self.conf, split)
class _PairDataset(torch.utils.data.Dataset):
def __init__(self, conf, split, load_sample=True):
self.root = DATA_PATH / conf.data_dir
assert self.root.exists(), self.root
self.split = split
self.conf = conf
split_conf = conf[split + "_split"]
if isinstance(split_conf, (str, Path)):
scenes_path = scene_lists_path / split_conf
scenes = scenes_path.read_text().rstrip("\n").split("\n")
elif isinstance(split_conf, Iterable):
scenes = list(split_conf)
else:
raise ValueError(f"Unknown split configuration: {split_conf}.")
scenes = sorted(set(scenes))
if conf.load_features.do:
self.feature_loader = CacheLoader(conf.load_features)
self.preprocessor = ImagePreprocessor(conf.preprocessing)
self.images = {}
self.depths = {}
self.poses = {}
self.intrinsics = {}
self.valid = {}
# load metadata
self.info_dir = self.root / self.conf.info_dir
self.scenes = []
for scene in scenes:
path = self.info_dir / (scene + ".npz")
try:
info = np.load(str(path), allow_pickle=True)
except Exception:
logger.warning(
"Cannot load scene info for scene %s at %s.", scene, path
)
continue
self.images[scene] = info["image_paths"]
self.depths[scene] = info["depth_paths"]
self.poses[scene] = info["poses"]
self.intrinsics[scene] = info["intrinsics"]
self.scenes.append(scene)
if load_sample:
self.sample_new_items(conf.seed)
assert len(self.items) > 0
def sample_new_items(self, seed):
logger.info("Sampling new %s data with seed %d.", self.split, seed)
self.items = []
split = self.split
num_per_scene = self.conf[self.split + "_num_per_scene"]
if isinstance(num_per_scene, Iterable):
num_pos, num_neg = num_per_scene
else:
num_pos = num_per_scene
num_neg = None
if split != "train" and self.conf[split + "_pairs"] is not None:
# Fixed validation or test pairs
assert num_pos is None
assert num_neg is None
assert self.conf.views == 2
pairs_path = scene_lists_path / self.conf[split + "_pairs"]
for line in pairs_path.read_text().rstrip("\n").split("\n"):
im0, im1 = line.split(" ")
scene = im0.split("/")[0]
assert im1.split("/")[0] == scene
im0, im1 = [self.conf.image_subpath + im for im in [im0, im1]]
assert im0 in self.images[scene]
assert im1 in self.images[scene]
idx0 = np.where(self.images[scene] == im0)[0][0]
idx1 = np.where(self.images[scene] == im1)[0][0]
self.items.append((scene, idx0, idx1, 1.0))
elif self.conf.views == 1:
for scene in self.scenes:
if scene not in self.images:
continue
valid = (self.images[scene] != None) | ( # noqa: E711
self.depths[scene] != None # noqa: E711
)
ids = np.where(valid)[0]
if num_pos and len(ids) > num_pos:
ids = np.random.RandomState(seed).choice(
ids, num_pos, replace=False
)
ids = [(scene, i) for i in ids]
self.items.extend(ids)
else:
for scene in self.scenes:
path = self.info_dir / (scene + ".npz")
assert path.exists(), path
info = np.load(str(path), allow_pickle=True)
valid = (self.images[scene] != None) & ( # noqa: E711
self.depths[scene] != None # noqa: E711
)
ind = np.where(valid)[0]
mat = info["overlap_matrix"][valid][:, valid]
if num_pos is not None:
# Sample a subset of pairs, binned by overlap.
num_bins = self.conf.num_overlap_bins
assert num_bins > 0
bin_width = (
self.conf.max_overlap - self.conf.min_overlap
) / num_bins
num_per_bin = num_pos // num_bins
pairs_all = []
for k in range(num_bins):
bin_min = self.conf.min_overlap + k * bin_width
bin_max = bin_min + bin_width
pairs_bin = (mat > bin_min) & (mat <= bin_max)
pairs_bin = np.stack(np.where(pairs_bin), -1)
pairs_all.append(pairs_bin)
# Skip bins with too few samples
has_enough_samples = [len(p) >= num_per_bin * 2 for p in pairs_all]
num_per_bin_2 = num_pos // max(1, sum(has_enough_samples))
pairs = []
for pairs_bin, keep in zip(pairs_all, has_enough_samples):
if keep:
pairs.append(sample_n(pairs_bin, num_per_bin_2, seed))
pairs = np.concatenate(pairs, 0)
else:
pairs = (mat > self.conf.min_overlap) & (
mat <= self.conf.max_overlap
)
pairs = np.stack(np.where(pairs), -1)
pairs = [(scene, ind[i], ind[j], mat[i, j]) for i, j in pairs]
if num_neg is not None:
neg_pairs = np.stack(np.where(mat <= 0.0), -1)
neg_pairs = sample_n(neg_pairs, num_neg, seed)
pairs += [(scene, ind[i], ind[j], mat[i, j]) for i, j in neg_pairs]
self.items.extend(pairs)
if self.conf.views == 2 and self.conf.sort_by_overlap:
self.items.sort(key=lambda i: i[-1], reverse=True)
else:
np.random.RandomState(seed).shuffle(self.items)
def _read_view(self, scene, idx):
path = self.root / self.images[scene][idx]
# read pose data
K = self.intrinsics[scene][idx].astype(np.float32, copy=False)
T = self.poses[scene][idx].astype(np.float32, copy=False)
# read image
if self.conf.read_image:
img = load_image(self.root / self.images[scene][idx], self.conf.grayscale)
else:
size = PIL.Image.open(path).size[::-1]
img = torch.zeros(
[3 - 2 * int(self.conf.grayscale), size[0], size[1]]
).float()
# read depth
if self.conf.read_depth:
# depth_path = (
# self.root / self.conf.depth_subpath / scene / (path.stem + ".h5")
# )
depth_subpath = self.depths[scene][idx]
depth_id = depth_subpath.split('/')[-1][:-3]
assert depth_id == path.stem
depth_path = self.root / depth_subpath
with h5py.File(str(depth_path), "r") as f:
depth = f["/depth"].__array__().astype(np.float32, copy=False)
depth = torch.Tensor(depth)[None]
assert depth.shape[-2:] == img.shape[-2:]
else:
depth = None
# add random rotations
do_rotate = self.conf.p_rotate > 0.0 and self.split == "train"
if do_rotate:
p = self.conf.p_rotate
k = 0
if np.random.rand() < p:
k = np.random.choice(2, 1, replace=False)[0] * 2 - 1
img = np.rot90(img, k=-k, axes=(-2, -1))
if self.conf.read_depth:
depth = np.rot90(depth, k=-k, axes=(-2, -1)).copy()
K = rotate_intrinsics(K, img.shape, k + 2)
T = rotate_pose_inplane(T, k + 2)
name = path.name
data = self.preprocessor(img)
if depth is not None:
data["depth"] = self.preprocessor(depth, interpolation="nearest")["image"][
0
]
K = scale_intrinsics(K, data["scales"])
data = {
"name": name,
"scene": scene,
"T_w2cam": Pose.from_4x4mat(T),
"depth": depth,
"camera": Camera.from_calibration_matrix(K).float(),
**data,
}
if self.conf.load_features.do:
features = self.feature_loader({k: [v] for k, v in data.items()})
if do_rotate and k != 0:
# ang = np.deg2rad(k * 90.)
kpts = features["keypoints"].copy()
x, y = kpts[:, 0].copy(), kpts[:, 1].copy()
w, h = data["image_size"]
if k == 1:
kpts[:, 0] = w - y
kpts[:, 1] = x
elif k == -1:
kpts[:, 0] = y
kpts[:, 1] = h - x
else:
raise ValueError
features["keypoints"] = kpts
data = {"cache": features, **data}
return data
def __getitem__(self, idx):
if self.conf.reseed:
with fork_rng(self.conf.seed + idx, False):
return self.getitem(idx)
else:
return self.getitem(idx)
def getitem(self, idx):
if self.conf.views == 2:
if isinstance(idx, list):
scene, idx0, idx1, overlap = idx
else:
scene, idx0, idx1, overlap = self.items[idx]
data0 = self._read_view(scene, idx0)
data1 = self._read_view(scene, idx1)
data = {
"view0": data0,
"view1": data1,
}
data["T_0to1"] = data1["T_w2cam"] @ data0["T_w2cam"].inv()
data["T_1to0"] = data0["T_w2cam"] @ data1["T_w2cam"].inv()
data["overlap_0to1"] = overlap
data["name"] = f"{scene}/{data0['name']}_{data1['name']}"
else:
assert self.conf.views == 1
scene, idx0 = self.items[idx]
data = self._read_view(scene, idx0)
data["scene"] = scene
data["idx"] = idx
return data
def __len__(self):
return len(self.items)
class _TripletDataset(_PairDataset):
def sample_new_items(self, seed):
logging.info("Sampling new triplets with seed %d", seed)
self.items = []
split = self.split
num = self.conf[self.split + "_num_per_scene"]
if split != "train" and self.conf[split + "_pairs"] is not None:
if Path(self.conf[split + "_pairs"]).exists():
pairs_path = Path(self.conf[split + "_pairs"])
else:
pairs_path = DATA_PATH / "configs" / self.conf[split + "_pairs"]
for line in pairs_path.read_text().rstrip("\n").split("\n"):
im0, im1, im2 = line.split(" ")
assert im0[:4] == im1[:4]
scene = im1[:4]
idx0 = np.where(self.images[scene] == im0)
idx1 = np.where(self.images[scene] == im1)
idx2 = np.where(self.images[scene] == im2)
self.items.append((scene, idx0, idx1, idx2, 1.0, 1.0, 1.0))
else:
for scene in self.scenes:
path = self.info_dir / (scene + ".npz")
assert path.exists(), path
info = np.load(str(path), allow_pickle=True)
if self.conf.num_overlap_bins > 1:
raise NotImplementedError("TODO")
valid = (self.images[scene] != None) & ( # noqa: E711
self.depth[scene] != None # noqa: E711
)
ind = np.where(valid)[0]
mat = info["overlap_matrix"][valid][:, valid]
good = (mat > self.conf.min_overlap) & (mat <= self.conf.max_overlap)
triplets = []
if self.conf.triplet_enforce_overlap:
pairs = np.stack(np.where(good), -1)
for i0, i1 in pairs:
for i2 in pairs[pairs[:, 0] == i0, 1]:
if good[i1, i2]:
triplets.append((i0, i1, i2))
if len(triplets) > num:
selected = np.random.RandomState(seed).choice(
len(triplets), num, replace=False
)
selected = range(num)
triplets = np.array(triplets)[selected]
else:
# we first enforce that each row has >1 pairs
non_unique = good.sum(-1) > 1
ind_r = np.where(non_unique)[0]
good = good[non_unique]
pairs = np.stack(np.where(good), -1)
if len(pairs) > num:
selected = np.random.RandomState(seed).choice(
len(pairs), num, replace=False
)
pairs = pairs[selected]
for idx, (k, i) in enumerate(pairs):
# We now sample a j from row k s.t. i != j
possible_j = np.where(good[k])[0]
possible_j = possible_j[possible_j != i]
selected = np.random.RandomState(seed + idx).choice(
len(possible_j), 1, replace=False
)[0]
triplets.append((ind_r[k], i, possible_j[selected]))
triplets = [
(scene, ind[k], ind[i], ind[j], mat[k, i], mat[k, j], mat[i, j])
for k, i, j in triplets
]
self.items.extend(triplets)
np.random.RandomState(seed).shuffle(self.items)
def __getitem__(self, idx):
scene, idx0, idx1, idx2, overlap01, overlap02, overlap12 = self.items[idx]
data0 = self._read_view(scene, idx0)
data1 = self._read_view(scene, idx1)
data2 = self._read_view(scene, idx2)
data = {
"view0": data0,
"view1": data1,
"view2": data2,
}
data["T_0to1"] = data1["T_w2cam"] @ data0["T_w2cam"].inv()
data["T_0to2"] = data2["T_w2cam"] @ data0["T_w2cam"].inv()
data["T_1to2"] = data2["T_w2cam"] @ data1["T_w2cam"].inv()
data["T_1to0"] = data0["T_w2cam"] @ data1["T_w2cam"].inv()
data["T_2to0"] = data0["T_w2cam"] @ data2["T_w2cam"].inv()
data["T_2to1"] = data1["T_w2cam"] @ data2["T_w2cam"].inv()
data["overlap_0to1"] = overlap01
data["overlap_0to2"] = overlap02
data["overlap_1to2"] = overlap12
data["scene"] = scene
data["name"] = f"{scene}/{data0['name']}_{data1['name']}_{data2['name']}"
return data
def __len__(self):
return len(self.items)
def visualize(args):
conf = {
"min_overlap": 0.1,
"max_overlap": 0.7,
"num_overlap_bins": 3,
"sort_by_overlap": False,
"train_num_per_scene": 5,
"batch_size": 1,
"num_workers": 0,
"prefetch_factor": None,
"val_num_per_scene": None,
}
conf = OmegaConf.merge(conf, OmegaConf.from_cli(args.dotlist))
dataset = MegaDepth(conf)
loader = dataset.get_data_loader(args.split)
logger.info("The dataset has elements.", len(loader))
with fork_rng(seed=dataset.conf.seed):
images, depths = [], []
for _, data in zip(range(args.num_items), loader):
images.append(
[
data[f"view{i}"]["image"][0].permute(1, 2, 0)
for i in range(dataset.conf.views)
]
)
depths.append(
[data[f"view{i}"]["depth"][0] for i in range(dataset.conf.views)]
)
axes = plot_image_grid(images, dpi=args.dpi)
for i in range(len(images)):
plot_heatmaps(depths[i], axes=axes[i])
plt.show()
if __name__ == "__main__":
from .. import logger # overwrite the logger
parser = argparse.ArgumentParser()
parser.add_argument("--split", type=str, default="val")
parser.add_argument("--num_items", type=int, default=4)
parser.add_argument("--dpi", type=int, default=100)
parser.add_argument("dotlist", nargs="*")
args = parser.parse_intermixed_args()
visualize(args)
|