Spaces:
Running
Running
File size: 11,868 Bytes
c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 4c12b36 c6cae91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
# Unpublished Copyright (c) 2020
# Magic Leap, Inc., All Rights Reserved.
#
# NOTICE: All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law. Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY. Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure of this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
# Originating Authors: Paul-Edouard Sarlin
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%
from copy import deepcopy
from pathlib import Path
from typing import List, Tuple
import torch
from torch import nn
def MLP(channels: List[int], do_bn: bool = True) -> nn.Module:
"""Multi-layer perceptron"""
n = len(channels)
layers = []
for i in range(1, n):
layers.append(nn.Conv1d(channels[i - 1], channels[i], kernel_size=1, bias=True))
if i < (n - 1):
if do_bn:
layers.append(nn.BatchNorm1d(channels[i]))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def normalize_keypoints(kpts, image_shape):
"""Normalize keypoints locations based on image image_shape"""
_, _, height, width = image_shape
one = kpts.new_tensor(1)
size = torch.stack([one * width, one * height])[None]
center = size / 2
scaling = size.max(1, keepdim=True).values * 0.7
return (kpts - center[:, None, :]) / scaling[:, None, :]
class KeypointEncoder(nn.Module):
"""Joint encoding of visual appearance and location using MLPs"""
def __init__(self, feature_dim: int, layers: List[int]) -> None:
super().__init__()
self.encoder = MLP([3] + layers + [feature_dim])
nn.init.constant_(self.encoder[-1].bias, 0.0)
def forward(self, kpts, scores):
inputs = [kpts.transpose(1, 2), scores.unsqueeze(1)]
return self.encoder(torch.cat(inputs, dim=1))
def attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
dim = query.shape[1]
scores = torch.einsum("bdhn,bdhm->bhnm", query, key) / dim**0.5
prob = torch.nn.functional.softmax(scores, dim=-1)
return torch.einsum("bhnm,bdhm->bdhn", prob, value), prob
class MultiHeadedAttention(nn.Module):
"""Multi-head attention to increase model expressivitiy"""
def __init__(self, num_heads: int, d_model: int):
super().__init__()
assert d_model % num_heads == 0
self.dim = d_model // num_heads
self.num_heads = num_heads
self.merge = nn.Conv1d(d_model, d_model, kernel_size=1)
self.proj = nn.ModuleList([deepcopy(self.merge) for _ in range(3)])
def forward(
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
batch_dim = query.size(0)
query, key, value = [
l(x).view(batch_dim, self.dim, self.num_heads, -1)
for l, x in zip(self.proj, (query, key, value))
]
x, _ = attention(query, key, value)
return self.merge(x.contiguous().view(batch_dim, self.dim * self.num_heads, -1))
class AttentionalPropagation(nn.Module):
def __init__(self, feature_dim: int, num_heads: int):
super().__init__()
self.attn = MultiHeadedAttention(num_heads, feature_dim)
self.mlp = MLP([feature_dim * 2, feature_dim * 2, feature_dim])
nn.init.constant_(self.mlp[-1].bias, 0.0)
def forward(self, x: torch.Tensor, source: torch.Tensor) -> torch.Tensor:
message = self.attn(x, source, source)
return self.mlp(torch.cat([x, message], dim=1))
class AttentionalGNN(nn.Module):
def __init__(self, feature_dim: int, layer_names: List[str]) -> None:
super().__init__()
self.layers = nn.ModuleList(
[AttentionalPropagation(feature_dim, 4) for _ in range(len(layer_names))]
)
self.names = layer_names
def forward(
self, desc0: torch.Tensor, desc1: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
for layer, name in zip(self.layers, self.names):
if name == "cross":
src0, src1 = desc1, desc0
else: # if name == 'self':
src0, src1 = desc0, desc1
delta0, delta1 = layer(desc0, src0), layer(desc1, src1)
desc0, desc1 = (desc0 + delta0), (desc1 + delta1)
return desc0, desc1
def log_sinkhorn_iterations(
Z: torch.Tensor, log_mu: torch.Tensor, log_nu: torch.Tensor, iters: int
) -> torch.Tensor:
"""Perform Sinkhorn Normalization in Log-space for stability"""
u, v = torch.zeros_like(log_mu), torch.zeros_like(log_nu)
for _ in range(iters):
u = log_mu - torch.logsumexp(Z + v.unsqueeze(1), dim=2)
v = log_nu - torch.logsumexp(Z + u.unsqueeze(2), dim=1)
return Z + u.unsqueeze(2) + v.unsqueeze(1)
def log_optimal_transport(
scores: torch.Tensor, alpha: torch.Tensor, iters: int
) -> torch.Tensor:
"""Perform Differentiable Optimal Transport in Log-space for stability"""
b, m, n = scores.shape
one = scores.new_tensor(1)
ms, ns = (m * one).to(scores), (n * one).to(scores)
bins0 = alpha.expand(b, m, 1)
bins1 = alpha.expand(b, 1, n)
alpha = alpha.expand(b, 1, 1)
couplings = torch.cat(
[torch.cat([scores, bins0], -1), torch.cat([bins1, alpha], -1)], 1
)
norm = -(ms + ns).log()
log_mu = torch.cat([norm.expand(m), ns.log()[None] + norm])
log_nu = torch.cat([norm.expand(n), ms.log()[None] + norm])
log_mu, log_nu = log_mu[None].expand(b, -1), log_nu[None].expand(b, -1)
Z = log_sinkhorn_iterations(couplings, log_mu, log_nu, iters)
Z = Z - norm # multiply probabilities by M+N
return Z
def arange_like(x, dim: int):
return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1
class SuperGlue(nn.Module):
"""SuperGlue feature matching middle-end
Given two sets of keypoints and locations, we determine the
correspondences by:
1. Keypoint Encoding (normalization + visual feature and location fusion)
2. Graph Neural Network with multiple self and cross-attention layers
3. Final projection layer
4. Optimal Transport Layer (a differentiable Hungarian matching algorithm)
5. Thresholding matrix based on mutual exclusivity and a match_threshold
The correspondence ids use -1 to indicate non-matching points.
Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew
Rabinovich. SuperGlue: Learning Feature Matching with Graph Neural
Networks. In CVPR, 2020. https://arxiv.org/abs/1911.11763
"""
default_config = {
"descriptor_dim": 256,
"weights": "indoor",
"keypoint_encoder": [32, 64, 128, 256],
"GNN_layers": ["self", "cross"] * 9,
"sinkhorn_iterations": 100,
"match_threshold": 0.2,
}
def __init__(self, config):
super().__init__()
self.config = {**self.default_config, **config}
self.kenc = KeypointEncoder(
self.config["descriptor_dim"], self.config["keypoint_encoder"]
)
self.gnn = AttentionalGNN(
feature_dim=self.config["descriptor_dim"],
layer_names=self.config["GNN_layers"],
)
self.final_proj = nn.Conv1d(
self.config["descriptor_dim"],
self.config["descriptor_dim"],
kernel_size=1,
bias=True,
)
bin_score = torch.nn.Parameter(torch.tensor(1.0))
self.register_parameter("bin_score", bin_score)
assert self.config["weights"] in ["indoor", "outdoor"]
path = Path(__file__).parent
path = path / "weights/superglue_{}.pth".format(self.config["weights"])
self.load_state_dict(torch.load(str(path)))
print('Loaded SuperGlue model ("{}" weights)'.format(self.config["weights"]))
def forward(self, data):
"""Run SuperGlue on a pair of keypoints and descriptors"""
desc0, desc1 = data["descriptors0"], data["descriptors1"]
kpts0, kpts1 = data["keypoints0"], data["keypoints1"]
if kpts0.shape[1] == 0 or kpts1.shape[1] == 0: # no keypoints
shape0, shape1 = kpts0.shape[:-1], kpts1.shape[:-1]
return {
"matches0": kpts0.new_full(shape0, -1, dtype=torch.int),
"matches1": kpts1.new_full(shape1, -1, dtype=torch.int),
"matching_scores0": kpts0.new_zeros(shape0),
"matching_scores1": kpts1.new_zeros(shape1),
}
# Keypoint normalization.
kpts0 = normalize_keypoints(kpts0, data["image0"].shape)
kpts1 = normalize_keypoints(kpts1, data["image1"].shape)
# Keypoint MLP encoder.
desc0 = desc0 + self.kenc(kpts0, data["scores0"])
desc1 = desc1 + self.kenc(kpts1, data["scores1"])
# Multi-layer Transformer network.
desc0, desc1 = self.gnn(desc0, desc1)
# Final MLP projection.
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
# Compute matching descriptor distance.
scores = torch.einsum("bdn,bdm->bnm", mdesc0, mdesc1)
scores = scores / self.config["descriptor_dim"] ** 0.5
# Run the optimal transport.
scores = log_optimal_transport(
scores, self.bin_score, iters=self.config["sinkhorn_iterations"]
)
# Get the matches with score above "match_threshold".
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
indices0, indices1 = max0.indices, max1.indices
mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0)
mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1)
zero = scores.new_tensor(0)
mscores0 = torch.where(mutual0, max0.values.exp(), zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, indices1), zero)
valid0 = mutual0 & (mscores0 > self.config["match_threshold"])
valid1 = mutual1 & valid0.gather(1, indices1)
indices0 = torch.where(valid0, indices0, indices0.new_tensor(-1))
indices1 = torch.where(valid1, indices1, indices1.new_tensor(-1))
return {
"matches0": indices0, # use -1 for invalid match
"matches1": indices1, # use -1 for invalid match
"matching_scores0": mscores0,
"matching_scores1": mscores1,
}
|