Spaces:
Running
Running
File size: 2,134 Bytes
437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import os
import re
import cv2
import numpy as np
from ..utils.common import Notify
def read_list(list_path):
"""Read list."""
if list_path is None or not os.path.exists(list_path):
print(Notify.FAIL, "Not exist", list_path, Notify.ENDC)
exit(-1)
content = open(list_path).read().splitlines()
return content
def load_pfm(pfm_path):
with open(pfm_path, "rb") as fin:
color = None
width = None
height = None
scale = None
data_type = None
header = str(fin.readline().decode("UTF-8")).rstrip()
if header == "PF":
color = True
elif header == "Pf":
color = False
else:
raise Exception("Not a PFM file.")
dim_match = re.match(r"^(\d+)\s(\d+)\s$", fin.readline().decode("UTF-8"))
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception("Malformed PFM header.")
scale = float((fin.readline().decode("UTF-8")).rstrip())
if scale < 0: # little-endian
data_type = "<f"
else:
data_type = ">f" # big-endian
data_string = fin.read()
data = np.fromstring(data_string, data_type)
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flip(data, 0)
return data
def _parse_img(img_paths, idx, config):
img_path = img_paths[idx]
img = cv2.imread(img_path)[:, :, ::-1]
if config["resize"] > 0:
img = cv2.resize(img, (config["resize"], config["resize"]))
return img
def _parse_depth(depth_paths, idx, config):
depth = load_pfm(depth_paths[idx])
if config["resize"] > 0:
target_size = config["resize"]
if config["input_type"] == "raw":
depth = cv2.resize(depth, (int(target_size / 2), int(target_size / 2)))
else:
depth = cv2.resize(depth, (target_size, target_size))
return depth
def _parse_kpts(kpts_paths, idx, config):
kpts = np.load(kpts_paths[idx])["pts"]
# output: [N, 2] (W first H last)
return kpts
|