File size: 8,487 Bytes
63932be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import numpy as np
import argparse
import copy
import os, sys
import open3d as o3d
from sys import argv, exit
from PIL import Image
import math
from tqdm import tqdm
import cv2


sys.path.append("../../")

from lib.extractMatchTop import getPerspKeypoints, getPerspKeypointsEnsemble, siftMatching
import pandas as pd


import torch
from lib.model_test import D2Net

#### Cuda ####
use_cuda = torch.cuda.is_available()
device = torch.device('cuda:0' if use_cuda else 'cpu')

#### Argument Parsing ####
parser = argparse.ArgumentParser(description='RoRD ICP evaluation on a DiverseView dataset sequence.')

parser.add_argument('--dataset', type=str, default='/scratch/udit/realsense/RoRD_data/preprocessed/', 
	help='path to the dataset folder')

parser.add_argument('--sequence', type=str, default='data1')

parser.add_argument(
	'--output_dir', type=str, default='out',
	help='output directory for RT estimates'
)

parser.add_argument(
	'--model_rord', type=str, help='path to the RoRD model for evaluation'
)

parser.add_argument(
	'--model_d2', type=str, help='path to the vanilla D2-Net model for evaluation'
)

parser.add_argument(
	'--model_ens', action='store_true',
	help='ensemble model of RoRD + D2-Net'
)

parser.add_argument(
	'--sift', action='store_true',
	help='Sift'
)

parser.add_argument(
	'--viz3d', action='store_true',
	help='visualize the pointcloud registrations'
)

parser.add_argument(
	'--log_interval', type=int, default=9,
	help='Matched image logging interval'
)

parser.add_argument(
	'--camera_file', type=str, default='../../configs/camera.txt',
	help='path to the camera intrinsics file. In order: focal_x, focal_y, center_x, center_y, scaling_factor.'
)

parser.add_argument(
	'--persp', action='store_true', default=False,
	help='Feature matching on perspective images.'
)

parser.set_defaults(fp16=False)
args = parser.parse_args()


if args.model_ens: # Change default paths accordingly for ensemble
	model1_ens = '../../models/rord.pth'
	model2_ens = '../../models/d2net.pth'

def draw_registration_result(source, target, transformation):
	source_temp = copy.deepcopy(source)
	target_temp = copy.deepcopy(target)
	source_temp.transform(transformation)
	trgSph.append(source_temp); trgSph.append(target_temp)
	axis1 = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0, 0, 0])
	axis2 = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0, 0, 0])
	axis2.transform(transformation)
	trgSph.append(axis1); trgSph.append(axis2)
	o3d.visualization.draw_geometries(trgSph)

def readDepth(depthFile):
	depth = Image.open(depthFile)
	if depth.mode != "I":
		raise Exception("Depth image is not in intensity format")

	return np.asarray(depth)

def readCamera(camera):
	with open (camera, "rt") as file:
		contents = file.read().split()

	focalX = float(contents[0])
	focalY = float(contents[1])
	centerX = float(contents[2])
	centerY = float(contents[3])
	scalingFactor = float(contents[4])

	return focalX, focalY, centerX, centerY, scalingFactor


def getPointCloud(rgbFile, depthFile, pts):
	thresh = 15.0

	depth = readDepth(depthFile)
	rgb = Image.open(rgbFile)

	points = []
	colors = []

	corIdx = [-1]*len(pts)
	corPts = [None]*len(pts)
	ptIdx = 0

	for v in range(depth.shape[0]):
		for u in range(depth.shape[1]):
			Z = depth[v, u] / scalingFactor
			if Z==0: continue
			if (Z > thresh): continue

			X = (u - centerX) * Z / focalX
			Y = (v - centerY) * Z / focalY

			points.append((X, Y, Z))
			colors.append(rgb.getpixel((u, v)))

			if((u, v) in pts):
				index = pts.index((u, v))
				corIdx[index] = ptIdx
				corPts[index] = (X, Y, Z)

			ptIdx = ptIdx+1

	points = np.asarray(points)
	colors = np.asarray(colors)

	pcd = o3d.geometry.PointCloud()
	pcd.points = o3d.utility.Vector3dVector(points)
	pcd.colors = o3d.utility.Vector3dVector(colors/255)

	return pcd, corIdx, corPts


def convertPts(A):
	X = A[0]; Y = A[1]

	x = [];	y = []

	for i in range(len(X)):
		x.append(int(float(X[i])))

	for i in range(len(Y)):
		y.append(int(float(Y[i])))

	pts = []
	for i in range(len(x)):
		pts.append((x[i], y[i]))

	return pts


def getSphere(pts):
	sphs = []

	for element in pts:
		if(element is not None):
			sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.03)
			sphere.paint_uniform_color([0.9, 0.2, 0])

			trans = np.identity(4)
			trans[0, 3] = element[0]
			trans[1, 3] = element[1]
			trans[2, 3] = element[2]

			sphere.transform(trans)
			sphs.append(sphere)

	return sphs


def get3dCor(src, trg):
	corr = []

	for sId, tId in zip(src, trg):
		if(sId != -1 and tId != -1):
			corr.append((sId, tId))

	corr = np.asarray(corr)

	return corr

if __name__ == "__main__":
	camera_file = args.camera_file
	rgb_csv = args.dataset + args.sequence + '/rtImagesRgb.csv'
	depth_csv = args.dataset + args.sequence + '/rtImagesDepth.csv'

	os.makedirs(os.path.join(args.output_dir, 'vis'), exist_ok=True)
	dir_name = args.output_dir
	os.makedirs(args.output_dir, exist_ok=True)

	focalX, focalY, centerX, centerY, scalingFactor = readCamera(camera_file)

	df_rgb = pd.read_csv(rgb_csv)
	df_dep = pd.read_csv(depth_csv)

	model1 = D2Net(model_file=args.model_d2).to(device)
	model2 = D2Net(model_file=args.model_rord).to(device)

	queryId = 0
	for im_q, dep_q in tqdm(zip(df_rgb['query'], df_dep['query']), total=df_rgb.shape[0]):
		filter_list = []
		dbId = 0
		for im_d, dep_d in tqdm(zip(df_rgb.iteritems(), df_dep.iteritems()), total=df_rgb.shape[1]):
			if im_d[0] == 'query':
				continue
			rgb_name_src = os.path.basename(im_q)
			H_name_src = os.path.splitext(rgb_name_src)[0] + '.npy'
			srcH = args.dataset + args.sequence + '/rgb/' + H_name_src
			rgb_name_trg = os.path.basename(im_d[1][1])
			H_name_trg = os.path.splitext(rgb_name_trg)[0] + '.npy'
			trgH = args.dataset + args.sequence + '/rgb/' + H_name_trg

			srcImg = srcH.replace('.npy', '.jpg')
			trgImg = trgH.replace('.npy', '.jpg')

			if args.model_rord:
				if args.persp:
					srcPts, trgPts, matchImg, _ = getPerspKeypoints(srcImg, trgImg, HFile1=None, HFile2=None, model=model2, device=device)
				else:
					srcPts, trgPts, matchImg, _ = getPerspKeypoints(srcImg, trgImg, srcH, trgH, model2, device)
			
			elif args.model_d2:
				if args.persp:
					srcPts, trgPts, matchImg, _ = getPerspKeypoints(srcImg, trgImg, HFile1=None, HFile2=None, model=model2, device=device)
				else:
					srcPts, trgPts, matchImg, _ = getPerspKeypoints(srcImg, trgImg, srcH, trgH, model1, device)
			
			elif args.model_ens:
				model1 = D2Net(model_file=model1_ens)
				model1 = model1.to(device)
				model2 = D2Net(model_file=model2_ens)
				model2 = model2.to(device)
				srcPts, trgPts, matchImg = getPerspKeypointsEnsemble(model1, model2, srcImg, trgImg, srcH, trgH, device)
			
			elif args.sift:
				if args.persp:
					srcPts, trgPts, matchImg, _ = siftMatching(srcImg, trgImg, HFile1=None, HFile2=None, device=device)
				else:
					srcPts, trgPts, matchImg, _ = siftMatching(srcImg, trgImg, srcH, trgH, device)

			if(isinstance(srcPts, list) == True):
				print(np.identity(4))
				filter_list.append(np.identity(4))
				continue


			srcPts = convertPts(srcPts)
			trgPts = convertPts(trgPts)

			depth_name_src = os.path.dirname(os.path.dirname(args.dataset)) + '/' + dep_q
			depth_name_trg = os.path.dirname(os.path.dirname(args.dataset)) + '/' + dep_d[1][1]

			srcCld, srcIdx, srcCor = getPointCloud(srcImg, depth_name_src, srcPts)
			trgCld, trgIdx, trgCor = getPointCloud(trgImg, depth_name_trg, trgPts)

			srcSph = getSphere(srcCor)
			trgSph = getSphere(trgCor)
			axis = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0, 0, 0])
			srcSph.append(srcCld); srcSph.append(axis)
			trgSph.append(trgCld); trgSph.append(axis)

			corr = get3dCor(srcIdx, trgIdx)

			p2p = o3d.pipelines.registration.TransformationEstimationPointToPoint()
			trans_init = p2p.compute_transformation(srcCld, trgCld, o3d.utility.Vector2iVector(corr))
			# print(trans_init)
			filter_list.append(trans_init)

			if args.viz3d:
				o3d.visualization.draw_geometries(srcSph)
				o3d.visualization.draw_geometries(trgSph)
				draw_registration_result(srcCld, trgCld, trans_init)

			if(dbId%args.log_interval == 0):
				cv2.imwrite(os.path.join(args.output_dir, 'vis') + "/matchImg.%02d.%02d.jpg"%(queryId, dbId//args.log_interval), matchImg)
			dbId += 1


		RT = np.stack(filter_list).transpose(1,2,0)

		np.save(os.path.join(dir_name, str(queryId) + '.npy'), RT)
		queryId += 1
		print('-----check-------', RT.shape)