File size: 6,193 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import logging
import zipfile
from collections import defaultdict
from collections.abc import Iterable
from pathlib import Path
from pprint import pprint

import matplotlib.pyplot as plt
import numpy as np
import torch
from omegaconf import OmegaConf
from tqdm import tqdm

from ..datasets import get_dataset
from ..models.cache_loader import CacheLoader
from ..settings import DATA_PATH, EVAL_PATH
from ..utils.export_predictions import export_predictions
from ..visualization.viz2d import plot_cumulative
from .eval_pipeline import EvalPipeline
from .io import get_eval_parser, load_model, parse_eval_args
from .utils import eval_matches_epipolar, eval_poses, eval_relative_pose_robust

logger = logging.getLogger(__name__)


class MegaDepth1500Pipeline(EvalPipeline):
    default_conf = {
        "data": {
            "name": "image_pairs",
            "pairs": "megadepth1500/pairs_calibrated.txt",
            "root": "megadepth1500/images/",
            "extra_data": "relative_pose",
            "preprocessing": {
                "side": "long",
            },
        },
        "model": {
            "ground_truth": {
                "name": None,  # remove gt matches
            }
        },
        "eval": {
            "estimator": "poselib",
            "ransac_th": 1.0,  # -1 runs a bunch of thresholds and selects the best
        },
    }

    export_keys = [
        "keypoints0",
        "keypoints1",
        "keypoint_scores0",
        "keypoint_scores1",
        "matches0",
        "matches1",
        "matching_scores0",
        "matching_scores1",
    ]
    optional_export_keys = []

    def _init(self, conf):
        if not (DATA_PATH / "megadepth1500").exists():
            logger.info("Downloading the MegaDepth-1500 dataset.")
            url = "https://cvg-data.inf.ethz.ch/megadepth/megadepth1500.zip"
            zip_path = DATA_PATH / url.rsplit("/", 1)[-1]
            zip_path.parent.mkdir(exist_ok=True, parents=True)
            torch.hub.download_url_to_file(url, zip_path)
            with zipfile.ZipFile(zip_path) as fid:
                fid.extractall(DATA_PATH)
            zip_path.unlink()

    @classmethod
    def get_dataloader(self, data_conf=None):
        """Returns a data loader with samples for each eval datapoint"""
        data_conf = data_conf if data_conf else self.default_conf["data"]
        dataset = get_dataset(data_conf["name"])(data_conf)
        return dataset.get_data_loader("test")

    def get_predictions(self, experiment_dir, model=None, overwrite=False):
        """Export a prediction file for each eval datapoint"""
        pred_file = experiment_dir / "predictions.h5"
        if not pred_file.exists() or overwrite:
            if model is None:
                model = load_model(self.conf.model, self.conf.checkpoint)
            export_predictions(
                self.get_dataloader(self.conf.data),
                model,
                pred_file,
                keys=self.export_keys,
                optional_keys=self.optional_export_keys,
            )
        return pred_file

    def run_eval(self, loader, pred_file):
        """Run the eval on cached predictions"""
        conf = self.conf.eval
        results = defaultdict(list)
        test_thresholds = (
            ([conf.ransac_th] if conf.ransac_th > 0 else [0.5, 1.0, 1.5, 2.0, 2.5, 3.0])
            if not isinstance(conf.ransac_th, Iterable)
            else conf.ransac_th
        )
        pose_results = defaultdict(lambda: defaultdict(list))
        cache_loader = CacheLoader({"path": str(pred_file), "collate": None}).eval()
        for i, data in enumerate(tqdm(loader)):
            pred = cache_loader(data)
            # add custom evaluations here
            results_i = eval_matches_epipolar(data, pred)
            for th in test_thresholds:
                pose_results_i = eval_relative_pose_robust(
                    data,
                    pred,
                    {"estimator": conf.estimator, "ransac_th": th},
                )
                [pose_results[th][k].append(v) for k, v in pose_results_i.items()]

            # we also store the names for later reference
            results_i["names"] = data["name"][0]
            if "scene" in data.keys():
                results_i["scenes"] = data["scene"][0]

            for k, v in results_i.items():
                results[k].append(v)

        # summarize results as a dict[str, float]
        # you can also add your custom evaluations here
        summaries = {}
        for k, v in results.items():
            arr = np.array(v)
            if not np.issubdtype(np.array(v).dtype, np.number):
                continue
            summaries[f"m{k}"] = round(np.mean(arr), 3)

        best_pose_results, best_th = eval_poses(
            pose_results, auc_ths=[5, 10, 20], key="rel_pose_error"
        )
        results = {**results, **pose_results[best_th]}
        summaries = {
            **summaries,
            **best_pose_results,
        }

        figures = {
            "pose_recall": plot_cumulative(
                {self.conf.eval.estimator: results["rel_pose_error"]},
                [0, 30],
                unit="°",
                title="Pose ",
            )
        }

        return summaries, figures, results


if __name__ == "__main__":
    from .. import logger  # overwrite the logger

    dataset_name = Path(__file__).stem
    parser = get_eval_parser()
    args = parser.parse_intermixed_args()

    default_conf = OmegaConf.create(MegaDepth1500Pipeline.default_conf)

    # mingle paths
    output_dir = Path(EVAL_PATH, dataset_name)
    output_dir.mkdir(exist_ok=True, parents=True)

    name, conf = parse_eval_args(
        dataset_name,
        args,
        "configs/",
        default_conf,
    )

    experiment_dir = output_dir / name
    experiment_dir.mkdir(exist_ok=True)

    pipeline = MegaDepth1500Pipeline(conf)
    s, f, r = pipeline.run(
        experiment_dir,
        overwrite=args.overwrite,
        overwrite_eval=args.overwrite_eval,
    )

    pprint(s)

    if args.plot:
        for name, fig in f.items():
            fig.canvas.manager.set_window_title(name)
        plt.show()