Spaces:
Running
Running
File size: 5,663 Bytes
4dfb78b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import argparse
import logging
from pathlib import Path
import torch
from omegaconf import OmegaConf
from ..datasets import get_dataset
from ..geometry.depth import sample_depth
from ..models import get_model
from ..settings import DATA_PATH
from ..utils.export_predictions import export_predictions
resize = 1024
n_kpts = 2048
configs = {
"sp": {
"name": f"r{resize}_SP-k{n_kpts}-nms3",
"keys": ["keypoints", "descriptors", "keypoint_scores"],
"gray": True,
"conf": {
"name": "gluefactory_nonfree.superpoint",
"nms_radius": 3,
"max_num_keypoints": n_kpts,
"detection_threshold": 0.000,
},
},
"sp_open": {
"name": f"r{resize}_SP-open-k{n_kpts}-nms3",
"keys": ["keypoints", "descriptors", "keypoint_scores"],
"gray": True,
"conf": {
"name": "extractors.superpoint_open",
"nms_radius": 3,
"max_num_keypoints": n_kpts,
"detection_threshold": 0.000,
},
},
"cv2-sift": {
"name": f"r{resize}_opencv-SIFT-k{n_kpts}",
"keys": ["keypoints", "descriptors", "keypoint_scores", "oris", "scales"],
"gray": True,
"conf": {
"name": "extractors.sift",
"max_num_keypoints": 4096,
"backend": "opencv",
},
},
"pycolmap-sift": {
"name": f"r{resize}_pycolmap-SIFT-k{n_kpts}",
"keys": ["keypoints", "descriptors", "keypoint_scores", "oris", "scales"],
"gray": True,
"conf": {
"name": "extractors.sift",
"max_num_keypoints": n_kpts,
"backend": "pycolmap",
},
},
"pycolmap-sift-gpu": {
"name": f"r{resize}_pycolmap_SIFTGPU-nms3-fixed-k{n_kpts}",
"keys": ["keypoints", "descriptors", "keypoint_scores", "oris", "scales"],
"gray": True,
"conf": {
"name": "extractors.sift",
"max_num_keypoints": n_kpts,
"backend": "pycolmap_cuda",
"nms_radius": 3,
},
},
"keynet-affnet-hardnet": {
"name": f"r{resize}_KeyNetAffNetHardNet-k{n_kpts}",
"keys": ["keypoints", "descriptors", "keypoint_scores", "oris", "scales"],
"gray": True,
"conf": {
"name": "extractors.keynet_affnet_hardnet",
"max_num_keypoints": n_kpts,
},
},
"disk": {
"name": f"r{resize}_DISK-k{n_kpts}-nms5",
"keys": ["keypoints", "descriptors", "keypoint_scores"],
"gray": False,
"conf": {
"name": "extractors.disk_kornia",
"max_num_keypoints": n_kpts,
},
},
"aliked": {
"name": f"r{resize}_ALIKED-k{n_kpts}-n16",
"keys": ["keypoints", "descriptors", "keypoint_scores"],
"gray": False,
"conf": {
"name": "extractors.aliked",
"max_num_keypoints": n_kpts,
},
},
}
def get_kp_depth(pred, data):
d, valid = sample_depth(pred["keypoints"], data["depth"])
return {"depth_keypoints": d, "valid_depth_keypoints": valid}
def run_export(feature_file, scene, args):
conf = {
"data": {
"name": "megadepth",
"views": 1,
"grayscale": configs[args.method]["gray"],
"preprocessing": {
"resize": resize,
"side": "long",
},
"batch_size": 1,
"num_workers": args.num_workers,
"read_depth": True,
"train_split": [scene],
"train_num_per_scene": None,
},
"split": "train",
"model": configs[args.method]["conf"],
}
conf = OmegaConf.create(conf)
keys = configs[args.method]["keys"]
dataset = get_dataset(conf.data.name)(conf.data)
loader = dataset.get_data_loader(conf.split or "test")
device = "cuda" if torch.cuda.is_available() else "cpu"
model = get_model(conf.model.name)(conf.model).eval().to(device)
if args.export_sparse_depth:
callback_fn = get_kp_depth # use this to store the depth of each keypoint
keys = keys + ["depth_keypoints", "valid_depth_keypoints"]
else:
callback_fn = None
export_predictions(
loader, model, feature_file, as_half=True, keys=keys, callback_fn=callback_fn
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--export_prefix", type=str, default="")
parser.add_argument("--method", type=str, default="sp")
parser.add_argument("--scenes", type=str, default=None)
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--export_sparse_depth", action="store_true")
args = parser.parse_args()
export_name = configs[args.method]["name"]
data_root = Path(DATA_PATH, "megadepth/Undistorted_SfM")
export_root = Path(DATA_PATH, "exports", "megadepth-undist-depth-" + export_name)
export_root.mkdir(parents=True, exist_ok=True)
if args.scenes is None:
scenes = [p.name for p in data_root.iterdir() if p.is_dir()]
else:
with open(DATA_PATH / "megadepth" / args.scenes, "r") as f:
scenes = f.read().split()
for i, scene in enumerate(scenes):
print(f"{i} / {len(scenes)}", scene)
feature_file = export_root / (scene + ".h5")
if feature_file.exists() and False:
continue
if not (data_root / scene / "images").exists():
logging.info("Skip " + scene)
continue
logging.info(f"Export local features for scene {scene}")
run_export(feature_file, scene, args)
|