File size: 6,715 Bytes
7a991bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Preprocessing code for the MegaDepth dataset
# dataset at https://www.cs.cornell.edu/projects/megadepth/
# --------------------------------------------------------
import os
import os.path as osp
import collections
from tqdm import tqdm
import numpy as np
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2
import h5py

import path_to_root  # noqa
from dust3r.utils.parallel import parallel_threads
from dust3r.datasets.utils import cropping  # noqa


def get_parser():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--megadepth_dir', required=True)
    parser.add_argument('--precomputed_pairs', required=True)
    parser.add_argument('--output_dir', default='data/megadepth_processed')
    return parser


def main(db_root, pairs_path, output_dir):
    os.makedirs(output_dir, exist_ok=True)

    # load all pairs
    data = np.load(pairs_path, allow_pickle=True)
    scenes = data['scenes']
    images = data['images']
    pairs = data['pairs']

    # enumerate all unique images
    todo = collections.defaultdict(set)
    for scene, im1, im2, score in pairs:
        todo[scene].add(im1)
        todo[scene].add(im2)

    # for each scene, load intrinsics and then parallel crops
    for scene, im_idxs in tqdm(todo.items(), desc='Overall'):
        scene, subscene = scenes[scene].split()
        out_dir = osp.join(output_dir, scene, subscene)
        os.makedirs(out_dir, exist_ok=True)

        # load all camera params
        _, pose_w2cam, intrinsics = _load_kpts_and_poses(db_root, scene, subscene, intrinsics=True)

        in_dir = osp.join(db_root, scene, 'dense' + subscene)
        args = [(in_dir, img, intrinsics[img], pose_w2cam[img], out_dir)
                for img in [images[im_id] for im_id in im_idxs]]
        parallel_threads(resize_one_image, args, star_args=True, front_num=0, leave=False, desc=f'{scene}/{subscene}')

    # save pairs
    print('Done! prepared all pairs in', output_dir)


def resize_one_image(root, tag, K_pre_rectif, pose_w2cam, out_dir):
    if osp.isfile(osp.join(out_dir, tag + '.npz')):
        return

    # load image
    img = cv2.cvtColor(cv2.imread(osp.join(root, 'imgs', tag), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
    H, W = img.shape[:2]

    # load depth
    with h5py.File(osp.join(root, 'depths', osp.splitext(tag)[0] + '.h5'), 'r') as hd5:
        depthmap = np.asarray(hd5['depth'])

    # rectify = undistort the intrinsics
    imsize_pre, K_pre, distortion = K_pre_rectif
    imsize_post = img.shape[1::-1]
    K_post = cv2.getOptimalNewCameraMatrix(K_pre, distortion, imsize_pre, alpha=0,
                                           newImgSize=imsize_post, centerPrincipalPoint=True)[0]

    # downscale
    img_out, depthmap_out, intrinsics_out, R_in2out = _downscale_image(K_post, img, depthmap, resolution_out=(800, 600))

    # write everything
    img_out.save(osp.join(out_dir, tag + '.jpg'), quality=90)
    cv2.imwrite(osp.join(out_dir, tag + '.exr'), depthmap_out)

    camout2world = np.linalg.inv(pose_w2cam)
    camout2world[:3, :3] = camout2world[:3, :3] @ R_in2out.T
    np.savez(osp.join(out_dir, tag + '.npz'), intrinsics=intrinsics_out, cam2world=camout2world)


def _downscale_image(camera_intrinsics, image, depthmap, resolution_out=(512, 384)):
    H, W = image.shape[:2]
    resolution_out = sorted(resolution_out)[::+1 if W < H else -1]

    image, depthmap, intrinsics_out = cropping.rescale_image_depthmap(
        image, depthmap, camera_intrinsics, resolution_out, force=False)
    R_in2out = np.eye(3)

    return image, depthmap, intrinsics_out, R_in2out


def _load_kpts_and_poses(root, scene_id, subscene, z_only=False, intrinsics=False):
    if intrinsics:
        with open(os.path.join(root, scene_id, 'sparse', 'manhattan', subscene, 'cameras.txt'), 'r') as f:
            raw = f.readlines()[3:]  # skip the header

        camera_intrinsics = {}
        for camera in raw:
            camera = camera.split(' ')
            width, height, focal, cx, cy, k0 = [float(elem) for elem in camera[2:]]
            K = np.eye(3)
            K[0, 0] = focal
            K[1, 1] = focal
            K[0, 2] = cx
            K[1, 2] = cy
            camera_intrinsics[int(camera[0])] = ((int(width), int(height)), K, (k0, 0, 0, 0))

    with open(os.path.join(root, scene_id, 'sparse', 'manhattan', subscene, 'images.txt'), 'r') as f:
        raw = f.read().splitlines()[4:]  # skip the header

    extract_pose = colmap_raw_pose_to_principal_axis if z_only else colmap_raw_pose_to_RT

    poses = {}
    points3D_idxs = {}
    camera = []

    for image, points in zip(raw[:: 2], raw[1:: 2]):
        image = image.split(' ')
        points = points.split(' ')

        image_id = image[-1]
        camera.append(int(image[-2]))

        # find the principal axis
        raw_pose = [float(elem) for elem in image[1: -2]]
        poses[image_id] = extract_pose(raw_pose)

        current_points3D_idxs = {int(i) for i in points[2:: 3] if i != '-1'}
        assert -1 not in current_points3D_idxs, bb()
        points3D_idxs[image_id] = current_points3D_idxs

    if intrinsics:
        image_intrinsics = {im_id: camera_intrinsics[cam] for im_id, cam in zip(poses, camera)}
        return points3D_idxs, poses, image_intrinsics
    else:
        return points3D_idxs, poses


def colmap_raw_pose_to_principal_axis(image_pose):
    qvec = image_pose[: 4]
    qvec = qvec / np.linalg.norm(qvec)
    w, x, y, z = qvec
    z_axis = np.float32([
        2 * x * z - 2 * y * w,
        2 * y * z + 2 * x * w,
        1 - 2 * x * x - 2 * y * y
    ])
    return z_axis


def colmap_raw_pose_to_RT(image_pose):
    qvec = image_pose[: 4]
    qvec = qvec / np.linalg.norm(qvec)
    w, x, y, z = qvec
    R = np.array([
        [
            1 - 2 * y * y - 2 * z * z,
            2 * x * y - 2 * z * w,
            2 * x * z + 2 * y * w
        ],
        [
            2 * x * y + 2 * z * w,
            1 - 2 * x * x - 2 * z * z,
            2 * y * z - 2 * x * w
        ],
        [
            2 * x * z - 2 * y * w,
            2 * y * z + 2 * x * w,
            1 - 2 * x * x - 2 * y * y
        ]
    ])
    # principal_axis.append(R[2, :])
    t = image_pose[4: 7]
    # World-to-Camera pose
    current_pose = np.eye(4)
    current_pose[: 3, : 3] = R
    current_pose[: 3, 3] = t
    return current_pose


if __name__ == '__main__':
    parser = get_parser()
    args = parser.parse_args()
    main(args.megadepth_dir, args.precomputed_pairs, args.output_dir)